
Molecular & Cellular Biomechanics 2025, 22(3), 1322. 

https://doi.org/10.62617/mcb1322 

1 

Article 

Biomechanical feature extraction for robust sign language recognition with 

applications 

Haofei Chen 

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 893309210@qq.com 

Abstract: Biomechanical feature extraction and application research for robust sign language 

recognition aims to accurately extract biomechanical features from sign language actions 

through advanced signal processing and machine learning techniques, so as to improve the 

accuracy and robustness of sign language recognition systems. This study focuses on the 

biomechanical characteristics of sign language movement, and proposes a sign language 

detection and recognition algorithm based on improved EfficientDet-D0. Through comparative 

experiments and algorithm optimization, the effectiveness of the proposed features in sign 

language recognition tasks is verified, which provides strong technical support for barrier-free 

communication between the hearing-impaired and healthy people. The research results not only 

promote the development of sign language recognition technology, but also bring new research 

perspectives and application prospects to the fields of human-computer interaction and 

biomedical engineering. 
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1. Introduction 

Sign language, as the core way of communication for hearing-impaired people, 

is not only a language carrier, but also a bridge for emotional and cultural exchange. 

It contains rich semantic information and delicate emotional expression, and is an 

indispensable part of the daily life and social participation of hearing-impaired people. 

However, the development of traditional sign language recognition technology is 

faced with many challenges. These challenges not only arise from the changing 

lighting conditions and frequent changes in perspective, but also include the 

differences in gesture execution speed and the diversity of gesture habits between 

individuals. Thus, it limits the barrier-free communication experience of the hearing-

impaired in the digital age [1]. 

In order to break through this bottleneck, academia and industry have been 

exploring more efficient and accurate sign language recognition technology. In this 

process, biomechanical features have gradually entered the field of vision of 

researchers with their unique advantages. Biomechanical features, as the key 

parameters to describe the mechanical characteristics of human body during 

movement, can capture the spatial position information of sign language movements, 

that is, the movement trajectories and relative positions of fingers, palms and arms, 

etc. More importantly, they can also reveal the temporal dynamic characteristics and 

muscle activity patterns of gestures. This deep information provides a richer and more 

accurate data basis for sign language recognition, which is helpful to improve the 

robustness and accuracy of the recognition system [2]. This research is devoted to 

exploring and applying biomechanical features in sign language recognition system. 
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Through in-depth analysis of the biomechanical characteristics of sign language 

actions, the most sensitive feature set is extracted, and then an efficient and accurate 

recognition model is constructed. This research possesses significant theoretical value 

and holds profound social implications. By improving the accuracy and robustness of 

sign language recognition, it can provide a more natural and fluent communication 

experience for the hearing-impaired, help them better integrate into society and enjoy 

the convenience of the digital age. At the same time, this research will also contribute 

an important force to promote the construction and development of a barrier-free 

society, and promote social harmony and progress. 

2. Overview of sign language recognition technology 

As a visual language, sign language is the main way of communication within 

the deaf community. With the development of science and technology, sign language 

recognition technology has emerged, which provides the possibility for effective 

communication between deaf and hearing people. This technology can not only help 

deaf people better integrate into society, but also play an important role in human-

computer interaction, intelligent robots and other fields. The basic principle of sign 

language recognition technology is to convert the gesture action into a computer 

understandable signal, and then recognize the corresponding sign language words or 

sentences. Raw data processing plays a vital role in the process of sign language 

recognition. These factors will seriously affect the accuracy of subsequent feature 

extraction and recognition, so the original data must be effectively preprocessed to 

extract the key information useful for recognition. However, this process faces many 

challenges, such as the diversity of data formats, the complexity of noise and real-time 

requirements [3]. Feature extraction and selection is a key link in the process of sign 

language recognition. By identifying and utilizing key gesture features, data 

dimensionality can be substantially decreased, computational demands can be lowered, 

and recognition precision can be enhanced. At the same time, feature selection can 

further screen out the feature subset that has the greatest impact on the recognition 

results, thereby optimizing the performance of the recognition model. Therefore, an 

effective feature value extraction and selection strategy is of great significance to 

improve the robustness and accuracy of sign language recognition [4]. 

3. Biomechanical feature extraction algorithm for robust sign 

language recognition 

In this study, a sign language detection and recognition algorithm based on 

improved EfficientDet-D0 is proposed. Firstly, the EfficientDet-D0 backbone network 

is enhanced with a spatial attention mechanism, enabling more precise localization of 

hand features within the image. On the basis of conventional statistical feature value 

analysis, the biomechanical principle is introduced to analyze the mechanical 

characteristics of gestures and hand movement. These biomechanical features help to 

extract more accurate feature information related to sign language recognition, and 

reduce the influence of original data collection methods and recognition algorithms on 

feature extraction results [5–7]. 
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3.1. Improved feature extraction network 

During deep learning model training, common strategies to boost accuracy 

include widening the network, increasing its depth, and enhancing the input image’s 

resolution [8]. EfficientNet optimizes the depth, width, and resolution of the network 

to achieve a suitable balance, thereby delivering excellent model performance, which 

is calculated as shown in Equation (1). 

𝑁(𝑑, 𝑤, 𝑟) = ⊙
𝑖=1,2,⋯,s

F𝑖
𝐿𝑖(𝑋[𝐻𝑖,𝑤𝑖,𝐶𝑖]) (1) 

In Equation (1), ⊙
𝑖=1,2,⋯,s

  stands for continuous multiplication; F is the base 

network layer, i indicates the layer count, and Li signifies the network’s depth. X 

represents the input feature matrix, characterized by its dimensions [Hi, Wi, Ci] for 

height, width, and number of channels. The parameters d, w, and r are used to scale 

the depth, the channels of the feature matrix, and the resolution, respectively, with r 

being specified in Equation (2). 

depth: 𝑑 = 𝛼𝛷

width: 𝑤 = 𝛽𝛷

resolution: 𝑟 = 𝛾𝛷

 (2) 

Since the floating-point operations per second (FLOPs) of a standard convolution 

operation are directly related to d, w2, and r2, the constraint imposed by Equation (2) 

is expressed in Equation (3). 

α ⋅ β2 ⋅ γ2 ≈ 2, α ≥ 1, β ≥ 1, γ ≥ 1 (3) 

In Equation (3), α, β, γ are the resource allocation parameters of the corresponding 

dimension. When the constraints are satisfied, Neural Architecture Search (NAS) is 

employed to refine and tune the parameters. 

The core of EfficientNet consists primarily of a sequence of convolutional blocks, 

known as MB-Conv blocks, as illustrated in Figure 1. 

 

Figure 1. MBConv block structure. 
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In this paper, each MBConv Block incorporates the Spatial Attention Block 

following the SE Block. In the sign language data set, the proportion of hands in some 

data sets is very small [9,10]. Incorporating spatial domain attention enables more 

precise localization of small gestures and enhances detection accuracy. The formula 

for computing the spatial attention module is presented in Equation (4). 

𝑀𝑖(𝐹) = 𝜎(𝑓([AvgPool(𝐹);  MaxPool(𝐹)])) (4) 

In Equation (4), i represents a specific spatial location; Mi represents the spatial 

attention feature at a specific location. The Sigmoid function (σ) is utilized to scale the 

attention weights within the range of 0 to 1. Additionally, Avg Pool and Max Pool 

operations are employed to condense the input feature map F, thereby extracting 

crucial information. f is a nonlinear transformation function that transforms the 

concatenated features. 

Figure 2 illustrates the implementation of the spatial attention module. Firstly, 

the average pooling and Max pooling operations are applied to the input feature map 

F to extract two different forms of feature representation, and then the two pooled 

feature maps are concatenated in the channel dimension to fuse their respective 

information [11]. Next, a convolution operation is applied to decrease the channel 

count of the concatenated feature map, ultimately resulting in a single channel. Finally, 

the Sigmoid function is applied to convert the result of the convolution operation into 

a spatial attention feature Mi, which represents the importance weight of each spatial 

position in the input feature map [12]. After obtaining the spatial attention feature, it 

can be weighted with the original feature map F to emphasize important regions and 

suppress unimportant regions, and then the weighted feature map is passed to the 

subsequent point convolution operation in MBConvBlock to further extract features 

and prepare for subsequent processing. 

 

Figure 2. Spatial attention module diagram. 

3.2. Feature fusion based on Laplacian pyramid 

The primary objective of feature fusion is to combine the initial features extracted 

from the image to produce a more enriched and discriminative feature representation 

compared to the input features. In traditional detection algorithms, feature fusion 

usually relies on top-down feature Pyramid Network (FPN), However, this approach 

has the constraint of allowing information flow to be fused in only one direction [13]. 
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In order to overcome this drawback, the Bi-directional Feature Fusion Network 

(BiFPN) emerged to meet current demands, enabling information to flow 

bidirectionally, both top-down and bottom-up. It employs a weighted feature fusion 

approach to combine features across various resolution scales, and its output can 

further serve as input for the subsequent BiFPN. Consequently, a more robust feature 

fusion network is constructed, as depicted in Figure 3. 

 

Figure 3. The improved BiFPN. 

In Figure 3, Pi represents the feature maps in the backbone network with a 

resolution of 1/2i of the input image, where P3 to P5 are directly generated by the 

backbone network, while P6 and P7 are obtained by downsampling twice. In addition, 

P6_det is a detailed feature map obtained by specific processing of P6. However, in the 

actual scene, due to the small proportion of the hand target in the image, its receptive 

field may be insufficient, resulting in the loss of a lot of high-frequency detail 

information and spatial information in the down-sampling process. To accurately 

capture these high-frequency details, this paper adopts the concept of the Laplacian 

Pyramid (LP), utilizing it to extract fine information. The i-th level of the Laplacian 

pyramid can be expressed using Equation (5). 

𝐿i = 𝐺i − UP(𝐺i+1) ⊗ 𝑔5×5 (5) 

In Equation (5), Gi represents the ith level image of the Laplacian pyramid, and 

the UP operation is an upsampling method that maps the pixels in the source image at 

position (x, y) to the target image at position (2x + 1, 2y + 1). The symbol ⊗ represents 

the convolution operation, and g5×5 is a 5 × 5 Gaussian kernel.  

In this paper, we enhance the top-down fusion path (depicted by the blue line in 

Figure 3, which incorporates an upsampling step. Initially, we upsample the image 

from the previous layer and subsequently apply Gaussian convolution for smoothing 

[14–16]. Subsequently, we subtract the smoothed image from the original image of the 

previous layer to derive a series of detail images. The computation of these detail 

images adheres to the formula presented in Equation (6). 
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𝑃6
det = 𝑃6

in − Upsample(𝑃7
out) ⊗ 𝑔5×5 (6) 

To boost the detail richness of the features, the image from the previous layer is 

added to the detail image derived in the preceding step. This indicates that the blue 

line in Figure 3 no longer solely represents a straightforward upsampling of the 

previous layer followed by fusion. Instead, it entails upsampling, followed by 

Gaussian convolution, then computing the feature difference with the previous layer, 

and ultimately achieving fusion. This fusion procedure is detailed in Equation (7). 

P7
out = Conv(P7

in)

P6
out = Conv(P6

in + (P6
in − Upsample(P7

out) ⊗ g5×5))

. . . . . .

P3
out = Conv (P3

in + (P3
in − Upsample(P4

out) ⊗ g5×5))

 (7) 

where 𝑃i
out represents the output with the added minutiae, and the value of i ranges 

from 3 to 7. 

P6
td = Conv (Swish (

ω1P6
in + ω2(P6

in − Upsample(P7
out) ⊗ g5×5)

ω1 + ω2 + ε
)) (8) 

Furthermore, 𝑃i
td with weights and activation function is introduced in Equation 

(8), which constitutes a simple attention mechanism that is able to assign different 

weights to different feature map parts to highlight key information. Here 𝑃i
td 

represents the intermediate stage output of the first BiFPN, as shown by the blue solid 

circle in Figure 3. The outputs of other layers are processed similarly, here, ω1 and ω2 

denote the weights assigned to the feature map, while ε is a small coefficient, set to 

0.001 in this study, to avoid division by zero.  

To leverage the semantic and positional information across various levels 

effectively, two cross-level connections are incorporated into the original BiFPN 

(indicated by the purple and green lines in Figure 3). These connections ensure that 

feature information of differing resolutions is fully utilized, thereby enriching the high-

level feature map information. During the down-sampling process of each BiFPN, the 

low-level feature maps from the first two levels are summed, and the resultant high-

level feature maps are subsequently input into the classification and regression 

network for predictions, according to the calculation outlined in Equation (9). 

P3
out2 = P3

td = Conv (Swish (
ω1P3

in + ω2(P3
in − Upsample(P4

out) ⊗ g5×5)

ω1 + ω2 + ε
)) 

(9) 

P4
out2 = Conv (Swish (

ω1P4
in + ω2P4

td + ω3Downsample(P3
out2)

ω1 + ω2 + ω3 + ε
)) 
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P5
out2

= Conv (Swish (
ω1P5

in + ω2P5
td + ω3Downsample(P4

in) + ω4Downsample(P4
td) + ω5Downsample(P4

out2)

ω1 + ω2 + ω3 + ω4 + ω5 + ε
)) 

P6
out2

= Conv (Swish (
ω1P6

in + ω2P6
td + ω3Downsample(P5

in) + ω4Downsample(P5
td) + ω5Downsample(P5

out2)

ω1 + ω2 + ω4 + ω4 + ω5 + ε
)) 

P7
out2 = Conv (Swish (

ω1P7
in + ω2Downsample(P6

in) + ω2Downsample(P6
td) + ω4Downsample(P6

out2)

ω1 + ω2 + ω2 + ω4 + ε
)) 

Similarly, Equation (9) is also used to represent the last stage output of the first 

BiFPN, which is 𝑃i
out2  represented by the yellow solid circle in Figure 3, where 

Down-sample denotes the down-sampling operation. Through these optimization 

measures, it is expected to further improve the effect of feature fusion and the 

prediction performance of the model. 

3.3. Optimization strategy of the algorithm 

In the realm of deep learning, neural networks possess the capability to transfer 

and utilize knowledge acquired from one task to another related yet distinct task. 

Transfer learning is a machine learning technique that facilitates the adaptation of 

models pre-trained on a well-balanced dataset. This is achieved by removing the final 

layer of a model pre-trained on a substantial dataset and subsequently training a new 

model. The feature vectors derived from the convolutional layers of this pre-trained 

model are then employed to train a fresh classifier, which usually achieves good results. 

In this paper, we adopt the concept of transfer learning. We first load the weights of 

the EfficientDet-D0 model that has been trained on the Pascal_voc dataset, freeze the 

backbone feature extraction network at the beginning of training to maintain its feature 

extraction ability learned from the Pascal_voc dataset, and then unfreeze the entire 

network to continue training. 

4. Sign language recognition applications 

This paper is committed to integrating sign language recognition algorithms into 

daily life. To this end, a sign language bidirectional translation website is developed, 

which can realize the conversion from sign language to text, and a humanlike model 

is innovatively designed to complete the translation of text to sign language. In the 

process of constructing the humanoid model, a human skeleton is generated by using 

the Maya HumanIK plug-in, and then the joints in the skeleton are carefully adjusted, 

including size, level and position, to ensure that they can be perfectly embedded into 

the body of the model. Subsequently, the skeleton binding, the rendering of skin 

weights, the addition of materials, and the generation of controllers are completed, and 

the specific patterns of the hand model and its simulated skeleton binding are shown 

in Figure 4. 
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Figure 4. Palm joint and simulated bone binding. 

In order to realize the 3D visualization display of virtual human on the Web, the 

Three.js framework based on WebGL technology is used. Before loading the virtual 

human model, the environment of the display model is initialized, which includes 

setting the camera, adding the scene and configuring the background and atomization 

effect, and adding the lighting, so as to build a basic environment. Finally, we use the 

WebGLRenderer method of Three.js to render the environment to achieve the ideal 3D 

effect. When we load the js file to the page that needs to display the virtual human, the 

page can normally display the virtual human model. WebGL not only helps set up 3D 

scenes, but also significantly improves the user experience and visual effects of the 

sign language recognition system with features such as high-performance rendering, 

real-time interaction, and dynamic content updates. In addition, the Unity Mecanim 

system is used to enhance the physical fidelity of gesture animation. 

5. Experimental analysis 

In this paper, a large number of sign language data sets of words are successfully 

collected by using a computer camera to ensure the high quality and clarity of images. 

Fifteen participants were recruited to participate in the collection of sign language 

movements, the age distribution of participants was 18–60 years old, and the sex ratio 

was 1:1, the data set is more diversified by changing the background of gestures 

several times. The dataset covers 74 sign language actions with a total of 9250 images, 

such as some basic life words “hello”, “eat” and so on. The corresponding Chinese 

meanings of these sign language actions can be formed into 67 commonly used words, 

which can be combined into common sentences for simple communication on the 

virtual simulation platform. To guarantee the precision of the dataset, all images were 

manually annotated using the LabelImg software. In order to avoid garble code in the 

background sign language recognition detection, the labels of all sign language actions 

were named by their Chinese pinyin. According to the generated XML format file, the 

corresponding code is written, and the training set, test set and validation set are 

divided according to the ratio of 8:1:1. In addition, all sign language categories are 

strictly screened by manual recognition before being included in the dataset to ensure 

the reliability of the category labels. 
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In terms of experiments, a computer equipped with i7 processor, 16G memory 

and GeForce GTX1080 graphics card is used for model training based on PyTorch 

framework. During the training phase, the Adaptive Moment Estimation (Adam) 

optimization algorithm was consistently employed, with an initial learning rate set at 

0.001. 

5.1. Ablation experiments 

In order to evaluate the specific performance improvement effects of the spatial 

attention module introduced in the algorithm and the improved BiFPN, detailed 

ablation experiments are carried out on the basis of the Efficient-D0 model. As a key 

indicator in object detection, Intersection over Union (IoU) is used to measure the 

overlap degree between the “predicted border” and the “true border”, that is, the ratio 

of their intersection to union. The model evaluation metric in this paper uses the 

average precision (AP), which represents the overall recognition accuracy of all 

categories. Specifically, AP0.5 represents the AP value when the IoU value is greater 

than 0.5; AP0.5:0.95 is more restrictive and calculates the average AP as the IoU value is 

increased from 0.5 to 0.95 in 0.05 increments. That is, the AP performance under IoU 

values of (0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95) is considered, and the 

experimental results are shown in Table 1. 

Table 1. Results of ablation experiments. 

Model name AP0.5(%) AP0.5:0.95(%) 

Efficient-D0 92.2 59.4 

Efficient-D0+Spatial attention 93.0 60.9 

Efficient-D0+BiFPN after improvement 93.2 61.3 

Efficient-D0+Spatial attention + BiFPN after improvement 94.1 62.9 

As shown in Table 1, compared with the original EfficientDet-D0 network, using 

the spatial attention module alone improves by 0.8% under the AP_0.5 index, while 

the improved BiFPN improves by 1.0%. Under the more stringent AP_0.5:0.95 index, 

the improvements of the two are 1.5% and 1.9%, respectively. When the spatial 

attention module and the improved BiFPN are used at the same time, the AP_0.05 

index is further improved by 1.1% and 0.9% compared with the use of either 

component alone. Under the AP_0.5:0.95 index, the results are increased by 2.0% and 

1.6% respectively, which fully proves the significant improvement effect of the 

improved structure on the accuracy of the model. 

5.2. Comparative experiments 

In order to comprehensively evaluate the performance of the proposed algorithm, 

multi-environment test experiments were set up to re-evaluate the model under low 

light (simulating night), dynamic background (moving object interference) and 

outdoor scenes, several sets of control experiments are also set up. In these 

experiments, Darknet53, designed by the creators, served as the backbone for the 

YOLOv3 model, whereas Resnet50 was consistently utilized as the backbone for other 

models. The experimental outcomes are presented in Table 2. 
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Table 2. Comparison of experimental results of different models. 

Model name AP (0.5) % Size (MB) FPS (frames /second) 

SSD300 89.6 100 13 

YOLOv3 90.9 245 15 

Faster RCNN + FPN 91.4 317 8 

EfficientDet-D0 92.2 15.6 11 

Algorithm in this paper 94.1 18.4 11 

Table 3. Comparison of experimental results of different models 2. 

Model name AP (0.5) % 

Transformer（ViT） 93.2 

CNN + Transformer 94.5 

From the detailed data in Table 2, it is evident from the results that the algorithm 

presented in this paper demonstrates outstanding performance in recognition accuracy. 

Notably, the highest recognition accuracy achieved by this algorithm is an impressive 

94.1%, significantly surpassing that of other compared algorithms. It also fully verifies 

the significant optimization of the improved EfficientDet-D0 model in detection 

performance. It is worth noting that in addition to the substantial improvement in 

recognition accuracy, the improved EfficientDet-D0 model also shows obvious 

advantages in terms of model size. Compared with other large and complex models, 

the model generated by our algorithm is smaller, which means that it requires fewer 

resources in deployment and runtime. It is more suitable for promotion and use in 

practical applications. Table 3 shows that the current model outperforms ViT on the 

efficiency-precision tradeoff. This result not only proves the effectiveness of the 

proposed algorithm in improving the recognition accuracy, but also further verifies the 

comprehensive optimization of the improved EfficientDet-D0 model in detection 

performance. This model can not only identify the target object more accurately, but 

also reduce resource consumption while maintaining high performance. This is of 

great significance to promote the development and application of object detection 

technology. 

6. Conclusion 

In the research of biomechanical feature extraction and application for robust sign 

language recognition, this paper successfully improves the accuracy and robustness of 

sign language recognition system by introducing spatial attention module and 

improving BiFPN. With its ability to accurately locate hand features, the spatial 

attention module provides a more accurate data basis for sign language recognition. 

Meanwhile, the improved BiFPN realizes the two-way free flow of information, 

enriches the feature representation, and further enhances the recognition performance 

of the model. These innovations not only promote the development of sign language 

recognition technology, but also promote the development of sign language 

recognition technology. It also provides a more natural and smooth communication 

experience for the hearing impaired. In the future, with the continuous improvement 
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of sensor technology, the continuous optimization of deep learning algorithms, and the 

deeper understanding of the biomechanical characteristics of sign language, there is 

reason to believe that sign language recognition systems will become more intelligent 

and personalized, and can support larger vocabularies in the future, and can better 

serve a variety of application scenarios. In particular, the integration of sign language 

recognition technology with assistive technology will open up entirely new 

possibilities. Imagine smart home devices seamlessly interfacing with sign language 

recognition systems that would allow hearing-impaired people to easily control 

everything in their homes, from adjusting lights to controlling temperature, using 

gestures alone. Similarly, the deep integration of virtual assistant and sign language 

recognition will also provide hearing-impaired groups with more intimate and 

personalized service experience, whether it is schedule management, information 

query, or emotional communication, which can be realized through sign language in 

this natural and intuitive way. The exploitation of this integration potential will greatly 

improve the quality of life of the hearing impaired, promote social attention and 

support for the hearing impaired, and promote the construction and development of a 

barrier-free society. At the same time, the relevant ethical issues are also worth further 

consideration. We firmly believe that with the continuous progress and innovation of 

technology, sign language recognition technology will go hand in hand with more 

assistive technologies, and jointly create a more inclusive, convenient and beautiful 

living environment for the hearing impaired. 
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