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Abstract: Lower limb rehabilitation exoskeletons are wearable assistive rehabilitation 

devices designed to protect and aid patients in rehabilitation training. However, traditional 

lower limb rehabilitation exoskeleton systems are limited by information acquisition 

technology, mostly adopting passive training with fixed trajectories and lacking real-time 

motion data interaction, resulting in deficiencies in the overall system’s safety and autonomy. 

Based on this, this study proposes a lower limb rehabilitation exoskeleton system based on 

digital twin technology. By leveraging digital twin technology, the system achieves a deep 

integration of virtual and physical spaces, improves human-machine information interaction 

technology, and enhances the effectiveness of rehabilitation training. Experimental results 

demonstrate that the system can achieve personalized gait trajectory planning and real-time 

motion data interaction, providing a new solution for lower limb rehabilitation. 
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1. Introduction 

With the increasing aging of the population, the number of patients with 

physical movement disorders caused by cerebrovascular diseases shows an 

increasing trend year by year. As a more common limb movement disorder, the 

lower limb movement disorder needs to be combined with scientific rehabilitation 

training to recover, so that the patient can restore the lower limb walking ability [1]. 

The lower limb exoskeleton robot is a mechanical and electrical equipment that 

wears the human lower limbs and cooperates with the lower limbs. It can simulate 

the patient’s limb movement track, assist the patient to carry out lower limb training, 

and then realize the rehabilitation treatment of the patient’s lower limbs. However, 

due to the different human gait, it is difficult to ensure the effective rehabilitation of 

patients with various pathologies, and there are certain safety risks [2]. With people’s 

attention, many scholars have carried out research on gait planning. Some studies 

have proposed a gait planning scheme based on linkage model and zero point 

moment, which can realize the adaptive walking of exoskeleton on different ground 

[3]. Some studies have proposed a gait planning scheme based on artificial 

intelligence algorithm, which mainly takes human gait parameters as input and gait 

trajectory as output, and constructs a training neural network, so as to obtain the 

stable motor gait trajectory of human exoskeleton [4]. In other studies, the fuzzy 

controller was used to adjust the joint angle and torque according to the real-time 

state parameters, and then to plan the stable gait trajectory of the exoskeleton. 
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However, the development cost of this method is relatively large [5]. Digital twin 

technology, as a cutting-edge digital technology. 

On the basis of information perception and real-time communication, the 

expression entity is constructed in the virtual space in the form of digitalization, and 

the virtual body is simulated, so as to achieve the purpose of controlling the entity 

and realize the two-way dynamic mapping of the virtual body and the entity bond. In 

the field of rehabilitation robot application, some studies have proposed a 

rehabilitation equipment design method that considers the clinical environment 

factors based on the concept of digital twin. The model establishment and the 

production of rehabilitation equipment can reduce the time and cost of rehabilitation 

equipment development [6]. To alleviate the lack of interaction between patients and 

rehabilitation equipment, a study designed an automatic gait data control system for 

digital twin, the sensor obtained gait information sent to the computer software for 

patient gait analysis, the effectiveness and real-time performance of human-computer 

interaction is improved, can realize the data interaction between robot and patient 

[7]. However, existing studies consider relatively little about safety and focus only 

on development time and cost. 

Based on this, this paper takes the lower limb rehabilitation exoskeleton as the 

research object and constructs a digital twin system for lower limb rehabilitation 

exoskeletons based on digital twin technology. Through the real-time mapping of 

physical devices by digital twin technology, trajectories are planned in real-time 

according to the patient’s movement needs and posture. Additionally, the digital twin 

system monitors the real-time motion status of the lower limb exoskeleton and the 

wearer, providing timely feedback and optimization, verifying the safety of 

equipment use, and ensuring effective rehabilitation and safety for the wearer. 

2. Design of personalized gait planning and digital twin system for 

lower limb rehabilitation exoskeletons 

2.1. Personalized gait planning for lower limb rehabilitation exoskeletons 

2.1.1. Analysis of gait parameters of human lower limbs 

Human walking is a cyclic action involving alternating and repetitive changes 

in the position of the lower limbs. The kinematic relationship of the human lower 

limbs is illustrated in Figure 1. 
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Figure 1. Kinematic relationship of human lower limbs. 

As can be seen from Figure 1, there exists the following relationship between 

step length and lower limb joints as well as joint angles: 

𝑆𝑡𝑒𝑝𝑙𝑒𝑛𝑔𝑡ℎ = 𝑙1(𝑠𝑖𝑛 𝛼1 + 𝑠𝑖𝑛 𝛼3) + 𝑙2(𝑠𝑖𝑛 𝛼2 + 𝑠𝑖𝑛 𝛼4) (1) 

In Equation (1), 𝛼1 and 𝛼3, as well as 𝛼2and 𝛼4, represent adjacent gaits of the 

left and right legs, differing by half a gait cycle. From this, it can be inferred that the 

step length of the human body is related to the length of the lower limbs and the joint 

movement angles. Due to the corresponding differences in human lower limbs, the 

study calculates the lengths of various segments of the lower limbs for different body 

types based on the Chinese standard B/T17245-2004 “Anthropometric Parameters of 

Adults” [7]. 

Assuming 𝐿1 , 𝐿2 , and 𝐿3  represent the lengths of the thigh, calf, and foot 

respectively, and 𝑋1 and 𝑋2 represent body weight and height, we have: 

{

𝐿1 = (−122.52 − 0.13𝑋1 + 0.235𝑋2)/0.547
𝐿2 = (23.47 − 0.5𝑋1 + 0.095𝑋2)/0.607
𝐿3 = (35.13 − 0.02𝑋1 + 0.03𝑋2)/0.514

 (2) 

Based on the Asian anthropometric standards and research analysis of various 

parts of the human lower limbs, the average dimensions and lengths of various 

segments of the lower limbs of healthy Asian adults are presented in Table 1. 

Table 1. Dimensions and lengths of lower limbs for adult males/females (unit: mm). 

Lower Limb Segments: Gender Maximum Value Minimum Value Average Value 

Thigh 
Male 507.59 425.89 455.88 

Female 475.88 431.66 453.65 

Calf 
Male 405.45 335.45 369.88 

Female 339.88 303.55 317.65 

Foot 
Male 77.69 66.78 69.88 

Female 64.56 57.98 61.56 
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Based on the data information in Table 1, the individual segment lengths of the 

lower limbs corresponding to different body types can be obtained through Equation 

(2). Furthermore, after determining the lower limb dimensions using Equation (1), 

gait trajectory planning can be achieved [8]. 

2.1.2. Gait data acquisition 

Selection of data acquisition equipment 

In this study, optical capture equipment was primarily used to collect motion 

data of the human lower limb joints, in order to obtain actual joint gait trajectories 

[8]. During the experiment, the subjects were required to maintain their hands above 

their chest to ensure the accuracy of the experiment. For each trial, the three-

dimensional coordinate data of the reflective markers on the subjects’ lower limbs 

within a 20-s period within the capture area were recorded. The aim was to more 

accurately capture and analyze the lower limb motion trajectories and posture 

changes of the subjects during walking. 

Research subjects 

In this study, 30 physically healthy young adults, all aged 24 years and with a 

gender ratio of 1:1, were selected as test subjects. 

Experiment 1: One healthy youth with a height of 175 cm was chosen to walk 

on a treadmill at speeds of 1.0 km/h, 2.0 km/h, 3.0 km/h, 4.0 km/h, and 5.0 km/h. 

Experiment 2: Five healthy youths with heights of 185 cm, 180 cm, 175 cm, 

170 cm, and 165 cm, respectively, were selected to walk on a treadmill at a constant 

speed of 3.0 km/h. 

Experiment 3: One adolescent was chosen to perform squats, climb a slope, and 

navigate stairs within the designated test area, with these actions being recorded. 

Spatial coordinate data of the reflective markers were recorded separately for 

each experiment within a duration of 60 s [9]. 

To effectively enhance the accuracy of experimental data, test subjects are 

required to wear tight-fitting clothing during the testing process and have six 

reflective markers attached to their lower limbs, specifically at the waist (labeled as 

𝐵1), hip joint (𝐵2), thigh (𝐵3), knee joint (𝐵4), calf (𝐵5), and ankle joint (𝐵6). After 

the placement of these markers, infrared capture cameras are utilized to capture the 

positions of each marker, which are then input into specialized software for 

identification. This process is employed to create the linkage (Link) for the lower 

limb segments. 

To achieve gait planning within a cycle, the study selected joint angle variations 

from one gait cycle and analyzed the processed actual gait trajectories. The results 

are shown in Figures 2 and 3. 



Molecular & Cellular Biomechanics 2025, 22(4), 1288.  

5 

5.0km/h

4.0km/h

3.0km/h

2.0km/h

1.0km/h

5.0km/h

4.0km/h

3.0km/h

2.0km/h

1.0km/h

0 50 100 150

-100

-50

0

50

0 50 100 150

-60

-50

-30

-40

-20

-10

0

Gait Cycle (%)Gait Cycle (%)

H
ip

 J
o
in

t 
A

n
g
le

 (
°)

H
ip

 J
o
in

t 
A

n
g
le

 (
°)

(a) Hip Joint (b) Knee Joint
 

Figure 2. Joint angle trajectories at different speeds: (a) Hip Joint; (b) Knee Joint. 
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Figure 3. Joint angle trajectories at the same speed: (a) Hip Joint; (b) Knee Joint. 

As clearly shown in Figures 2 and 3, under the conditions of different speeds 

and body types, the step length and gait cycle of the gait trajectories undergo 

corresponding changes. By fitting these characteristic parameters, the corresponding 

gait trajectories can be obtained [10]. 

2.1.3. Construction of a personalized gait planning model for lower limbs 

Extraction of characteristic parameters from gait trajectory 

In this research process, the Bernstein equation was employed to fit the joint 

trajectory curves obtained from Experiment 2, in order to obtain the characteristic 

parameters of the joint curves, namely: 

𝐿(𝑡: 𝜆𝑗, 𝜔) =∑𝑃𝑗𝑏𝑗,𝑛(𝑡)

𝑛

𝑗=0

 (3) 

In Equation (3), 𝑡 represents the gait cycle, and 𝑡 ∈ [0,1]; 𝑃𝑗  denotes a set of 

given control points, and 𝑃𝑗 ∈ 𝑅
𝑢(𝑢 = 2,3; 𝑗 = 0,1,⋯ , 𝑛) ; 𝑏𝑗,𝑛(𝑡)  is the basis 

function for the 𝑛 gait motion curve; 𝜔 stands for the overall control parameter, and 

𝜔 ∈ [0,1]; 𝜆𝑗 represents the shape control parameter, and it has: 



Molecular & Cellular Biomechanics 2025, 22(4), 1288.  

6 

0 ≤ 𝜆𝑗 ≤ (
𝑛
𝑗
) (𝑗 = 0,1,⋯ , 𝑛), (

𝑛
𝑗
) =

𝑛!

𝑗! (𝑛 − 𝑗)!
 (4) 

After completing the curve fitting, the average gait curves of the hip and knee 

joints are converted into scatter plot form and substituted into Equation (5) to obtain 

the overall common control points of the curves. 

(𝑃1, 𝑃2, ⋯ , 𝑃𝑛)

(

 

𝑏0,𝑛（𝑡）

𝑏1,𝑛（𝑡）
⋮
𝑏𝑛,𝑛（𝑡）)

 = (𝑙1, 𝑙2,⋯ , 𝑙𝑛) (5) 

In Equation (5), 𝑃1, 𝑃2,⋯ , 𝑃𝑛  represents the common control points, and 

𝑙1, 𝑙2,⋯ , 𝑙𝑛 represents the discrete points. 

At this point, by fitting the gait trajectory curves of young individuals with 

different body types using Equation (5), the corresponding shape control parameters 

𝜆𝑗 for the curves can be obtained, as detailed in Table 2. 

Table 2. Shape control parameters 𝜆𝑗 for hip joints of young individuals with different body types. 

Body posture and height (cm) 
Average shape control parameters 

𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝝀𝟔 

185 
Hip Joint 5.68 13.19 24.19 14.08 5.68 2.48 

Knee Joint 4.88 17.88 21.58 24.06 4.88 5.55 

180 
Hip Joint 5.19 11.68 18.47 19.55 5.19 2.78 

Knee Joint 8.26 9.45 21.18 24.24 8.26 2.68 

175 
Hip Joint 5.18 11.68 18.60 19.60 5.18 2.78 

Knee Joint 4.98 7.10 24.30 17.20 4.98 4.88 

170 
Hip Joint 4.09 13.88 15.18 22.27 4.09 3.19 

Knee Joint 3.28 14.09 22.48 27.87 3.28 2.68 

165 
Hip Joint 3.65 13.18 13.19 18.09 9.90 4.19 

Knee Joint 1.09 9.70 14.88 13.10 10.40 3.08 

Similarly, by fitting different trajectory curves at various speeds using Equation 

(5), the obtained shape control parameters are shown in Table 3. 

Table 3. Shape control parameters 𝜆𝑗 for hip joints at different speeds. 

Speed (km/h) 
Mean Shape Control Parameters 

𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝝀𝟔 

5.0 
Hip Joint 8.19 15.28 18.70 29.38 8.49 1.29 

Knee Joint 10.88 13.88 21.29 26.17 7.29 4.18 

4.0 
Hip Joint 6.77 14.68 18.80 24.30 9.68 2.48 

Knee Joint 5.18 14.48 19.19 22.29 5.55 3.68 

3.0 
Hip Joint 4.68 14.47 15.90 26.18 10.88 4.77 

Knee Joint 3.68 8.09 17.30 16.55 6.35 3.84 
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Table 3. (Continued). 

Speed (km/h) 
Mean Shape Control Parameters 

𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝝀𝟔 

2.0 
Hip Joint 3.48 12.68 15.70 24.18 13.36 6.65 

Knee Joint 4.09 11.68 18.47 22.29 9.18 4.77 

1.0 
Hip Joint 2.88 8.78 14.55 23.48 15.78 8.85 

Knee Joint 1.27 13.85 23.89 11.87 7.28 4.78 

Using the data in Tables 1 and 2 as the characteristic parameters of the joint 

curves, and taking human body shape characteristics and desired walking speed as 

inputs, a gait parameter model is constructed to output the characteristic parameters 

of the joint curves, thereby obtaining the gait trajectories of the lower limbs [11]. 

Motion scenario model and gait parameter model 

In lower limb gait rehabilitation, the involved motion scenarios exhibit 

corresponding differences, resulting in varied lower limb gait trajectories. To address 

this, the study employs Optical Capture Experiment 3 to obtain trajectories for three 

corresponding motion scenarios, as shown in Figure 4. The coordinates of the 

common control points of the joints for the corresponding scenarios are detailed in 

Table 4. 
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Figure 4. Actual joint trajectories of the human body in different motion scenarios: (a) Stair-Climbing Gait; (b) 

Squat-Thrust Gait; (c) Uphill Gait. 
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Among them, Figure 4a shows the gait track of the same teenager in climbing 

stairs, Figure 4b shows the gait track of squatting action, and Figure 4c shows the 

gait track of climbing with different slopes. 

In this study, we utilize the motion scenario model and its related conditional 

parameters as input to calculate the coordinates of the common control points of the 

joint curves, thereby determining the overall trend of the joint curves [12]. By 

applying Equation (5) to fit and analyze the gait curves under three different motion 

scenarios, we obtain the common control points for the corresponding scenario 

trajectories, as detailed in Table 4. 

Table 4. Coordinates of common control points of joints for corresponding scenarios. 

Motion Scenario Climbing stairs Climbing slopes Squatting down 

Joint Hip Joint Knee Joint Hip Joint Knee Joint Hip Joint Knee Joint 

𝐵1 0, 0.20 0, 1.60 0, −31.38 0, −27.19 0, 5.68 0, 0.80 

𝐵2 29, −5.80 21, 0.60 23, −44.78 7, −51.37 1.09, 39.77 1.19, 40.3 

𝐵3 33, 60.80 33, 54.68 31.48, −7.78 22, −49.68 2.48, 124.48 2.1, 140.68 

𝐵4 55.39, 43.49 37.48, 102.66 51.49, 25.00 45, −10.48 3.58, 18.33 2.5, 25.78 

𝐵5 71, −50.68 51.48, 60.68 71, −18.09 78.49, −69.01 3.5, 1.90 3.5, 1.90 

𝐵6 95.58, −20.38 72.79, −2.60 90, −41.68 82.01, −75.55   

The experimental results demonstrate the mapping relationship between 

different motion scenarios and the corresponding common control points of joint 

curves. Based on this dataset, a gait parameter trajectory prediction model based on a 

neural network is constructed, as shown in Figure 5. The model consists of two 

input nodes (receiving motion scenarios and their conditional parameters 

respectively), one output layer with 14 output nodes (representing the common 

control points of hip and knee joints), and a hidden layer with 24 neurons. The neural 

network model is trained using the BP (backpropagation) algorithm. This motion 

scenario model can instantly output the common control points of the corresponding 

gait trajectory based on the input scenario and its conditional parameters, thereby 

capturing the overall trend of the gait trajectory in that motion scenario through these 

control points [13]. 

Selection of Sports 

Scenarios

Input of Scenario 

Conditions

Common Control Points for 

Corresponding Scenarios

 
Figure 5. Motion scenario model. 
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For the gait parameter model, its construction method is similar to that of the 

motion scenario model, primarily using human body parameters and desired walking 

speed to predict joint trajectories and, based on shape control parameters, to predict 

gait trajectory parameters [14]. By making corresponding changes to these 

parameters, different gait trajectories can be obtained, thereby constructing a gait 

parameter trajectory model, as shown in Figure 6. 

Human Body 

Posture 

Parameters

Desired Gait 

Speed

Height

Height
j

 

Figure 6. Gait parameter model. 

After inputting the human body posture parameters and desired gait speed, the 

gait parameter model outputs shape control parameters that govern the local shape of 

the trajectory. By fitting Equation (5), the angle change curves of each joint are 

obtained, thereby enabling personalized lower limb gait trajectory planning. 

2.2. Design of a digital twin system for lower limb rehabilitation 

exoskeletons 

2.2.1. System composition 

The geometric structure model focuses on depicting the geometric shape, 

dimensions, and dynamic connections between components of the exoskeleton 

prototype; the physical mechanics model conducts in-depth analysis of stress 

distribution patterns and the moments borne by joints under various motion scenarios 

for the exoskeleton; the behavioral response model aims to make immediate 

adjustments based on any changes in the skeletal state; the agent interaction model 

specializes in processing and responding to any changes in exoskeleton joint angles; 

finally, the safety rule evaluation model is responsible for comprehensively 

evaluating all motion parameters to ensure they comply with established safety 

standards [15]. 

2.2.2. Design and development of the digital twin system platform 

Setup of the system development environment 

Utilizing Unity and Python technologies, this paper designs and implements a 

digital twin system equipped with a user interface. The system architecture is divided 

into two parts: The client and the backend data. The backend data component 

encompasses gait function service modules, real-time data exchange modules, and a 

historical data storage database. The client part is developed based on the PyQt5 
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framework, with core functions including virtual simulation demonstrations of twin 

models, real-time monitoring of exoskeleton prototype status, and online planning of 

gait paths. The specific technical environment configuration for system development 

is detailed in Table 5. 

Table 5. System development environment. 

Project Hardware/Software 

Operating System Win10 

Basic Development Platform Unity 2019 

IDE VS, MATLAB, PyCharm 

Programming Language C#, Python 

Communication Method Socket, OPC UA 

Integrated design of data backend 

The crucial role of the data backend lies in facilitating data circulation and 

integration of model algorithms between systems. The digital twin system for lower 

limb exoskeletons achieves precise correspondence between the virtual and physical 

environments through data interaction between its twin model and the physical 

exoskeleton. To ensure timely data transmission and updates, we have carefully 

constructed a data communication service system that serves as the hub connecting 

and coordinating the various modules of the system [16]. Its comprehensive 

functionality not only covers real-time data capture and storage but also enables 

bidirectional communication between the virtual and physical worlds, allowing the 

human-computer interaction interface to reflect changes in the status of both the 

physical exoskeleton and the digital twin model in real-time. In constructing the 

algorithms for the digital twin model, we integrated the predictive analysis 

capabilities of the safety assessment model with multi-objective optimization 

algorithms for gait trajectories. The safety assessment model is further decomposed 

into an agent-based stress prediction module, a dynamics-based joint torque 

prediction module, and a stability assessment module based on ZMP (Zero Moment 

Point, zero torque point). After successfully integrating these algorithm modules into 

the system, we reiterate the importance of the data communication service [17]. It is 

not only critical for real-time data transmission and updates within the system but 

also ensures immediate data capture, storage, and seamless communication between 

the virtual and physical worlds, providing a solid foundation for the stable operation 

of the system. 

Integrated development of client-side applications 

The client-side application is built on the PyQt5 framework, integrating all 

visual elements into a unified Qt interface. For the digital twin system of lower limb 

rehabilitation exoskeletons, the human-computer interaction interface is meticulously 

divided into three main modules based on its functional characteristics: Real-time 

status monitoring, interactive control between the physical and virtual exoskeletons, 

and customized gait planning services [18]. The real-time status monitoring module 

dynamically displays angle data of each joint during movement in the form of graphs 

on the interface through the system’s internal real-time data circulation mechanism, 
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providing users with intuitive visual feedback. Additionally, this module integrates 

camera monitoring functionality and the twin model from the Unity operation 

interface, enabling users to observe every detail of the movement status in real-time. 

The interactive control module between the physical and virtual exoskeletons 

provides users with the ability to control both the physical exoskeleton and its digital 

twin simultaneously through the human-computer interaction interface. Users can 

not only drive the movement of the physical exoskeleton by manipulating the twin 

model but also receive real-time feedback on the movement status of the physical 

exoskeleton from the twin model, achieving seamless interaction between the virtual 

and real worlds. The customized gait planning services module focuses on meeting 

users’ personalized adjustment needs for movement scenarios and requirements [19]. 

Users can select a suitable scenario from four preset movement scenarios and input 

the patient’s physical characteristics and desired movement speed. Subsequently, the 

system employs advanced personalized gait planning technology to generate an 

initial optimized movement trajectory for the user. On this basis, the system further 

utilizes multidisciplinary optimization algorithms based on the exoskeleton digital 

twin model for multiple iterative simulations to ensure that the final generated gait 

trajectory not only meets users’ expectations but also achieves optimal movement 

effects [20]. 

3. System testing 

3.1. Establishing an experimental platform 

After the exoskeleton is worn by the human body, the lower limbs of the human 

body will be tightly combined with it. If sensors are placed on the medial side of the 

lower limbs, it will seriously affect the movement of the wearer’s lower limbs. 

Therefore, they need to be placed on the lateral side. The driving equipment of the 

exoskeleton prototype is Siemens S7-1500, which establishes communication with 

the human-computer interaction interface through OPC UA to drive the movement 

of the exoskeleton [21]. 

3.2. System function testing 

3.2.1. Virtual control via real-time data testing 

During this research process, sensors installed on the exoskeleton prototype 

were used to collect changes in joint angles and compare them with feedback 

information from the model’s moving joints. The results are shown in Figure 7. 
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Figure 7. Trajectory comparison between Twin model and prototype: (a) Comparison of Gait Walking; (b) 

Comparison of Squat-Thrust Movements. 

As shown in Figure 7, under two different motion scenarios, the average errors 

of the trajectories are 3.09° and 2.31°, respectively. This indicates that the motion of 

the twin model can fully reflect the motion posture of the exoskeleton prototype, 

enabling real-time monitoring of the motion state [22]. 

3.2.2. Virtual-to-real control experiment 

Using the normal walking gait trajectory at 3.0 km/h as input, the comparison of 

the motion paths output by the exoskeleton prototype and the digital twin model is 

shown in Figure 8. 
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Figure 8. Comparison of control trajectory effects between prototype entity and Twin model: (a) Hip Joint; (b) Gait 

Cycle. 
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As clearly shown in Figure 8, the average error of the system-output trajectory 

is 1.72°, indicating that with the feedback from the twin model, the exoskeleton 

prototype can accurately perform the corresponding gait trajectory. Although there is 

a corresponding error, it is relatively small. 

3.2.3. Online gait planning test for exoskeleton 

After setting up the experimental environment, detailed gait planning was 

conducted for four specific motion scenarios: Normal walking (at a speed of 3.0 

km/h), squatting and standing up (with a maximum squatting angle of 120°), 

climbing a slope (at an angle of 10° and a speed of 3.0 km/h), and ascending stairs 

(with each step being 15 cm high). Operators can input corresponding parameters 

and desired speeds on the human-computer interaction interface based on the 

selected motion scenario. Subsequently, the system plans the target motion trajectory 

based on these inputs, combined with the motion scenario and gait parameter model, 

and imports it into the digital twin model of the exoskeleton for virtual simulation 

experiments [23]. In this process, we utilized an improved genetic algorithm to 

further optimize the target trajectory. 

For each experimental action, three repeated measurements were conducted, 

with each gait lasting 10 s. Since attitude sensors may be interfered with by external 

factors during data acquisition, leading to data instability, necessary preprocessing 

was performed on the collected data. Subsequently, the actual motion trajectory of 

the exoskeleton prototype was measured through the experimental platform. During 

the testing process, it was found that the optimized trajectory could guide the 

exoskeleton prototype to move more accurately along the target trajectory, with 

relatively small deviations between them. However, some errors still existed, mainly 

due to the hardware assembly of the exoskeleton prototype, especially during the 

assembly of hip and knee joints, where actual joint clearances resulted in certain 

deviations from the target trajectory during actual measurements [24]. 

To this end, Equations (6) were employed to calculate the mean error 𝑀𝐴𝐸 and 

mean percentage error 𝑀𝐴𝑃𝐸 of the exoskeleton’s motion. The calculation results 

are detailed in Table 6. 

(

 
 
 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑝𝑖 − 𝑟𝑖|

𝑛

𝑖=1

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑝𝑖 − 𝑟𝑖
𝑟

|

𝑛

𝑖=1

 (6) 

In Equation (6), 𝑛  represents the number of sampling times; 𝑟𝑖  denotes the 

target trajectory under the 𝑖 -th sampling; and 𝑝𝑖  represents the gait angle of the 

actual motion trajectory under the 𝑖-th sampling. 
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Table 6. Joint angle errors for different motion scenarios (unit: Degrees). 

Different gait joints 𝑴𝑨𝑬 𝑴𝑨𝑷𝑬 

Hip joint during walking 0.86 0.35 

Knee joint during walking 1.54 0.31 

Hip joint during squatting and 

standing up 
3.28 1.77 

Knee joint during squatting and 

standing up 
4.19 2.88 

Hip joint during climbing uphill 1.71 0.78 

Knee joint during climbing 

uphill 
1.88 1.47 

Hip joint during climbing stairs 4.69 3.44 

Hip joint during climbing stairs 5.81 3.91 

Through analysis of Table 6, it is evident that the personalized planning of the 

digital twin system performs well in walking and uphill climbing scenarios, with 

relatively small errors. Although the accuracy of gait for squatting and standing up, 

as well as stair climbing, is lower, the errors remain small, indicating that the online 

gait planning function of the digital twin system has a relatively high degree of 

accuracy [25]. 

3.3. Exoskeleton gait planning test 

During this research process, the traditional PID (Proportional Integral 

Differential) algorithm and the digital twin algorithm were utilized to optimize the 

exoskeleton gait, and the optimization effects of the two algorithms were compared. 

The details are shown in Table 7. 

Table 7. Comparison of exoskeleton gait optimization effects. 

Optimization Algorithms 
Number of Iterations 

(times) 

Time Consumption 

(seconds) 

Average Trajectory 

Error (degrees) 

Traditional PID Algorithm 14 6.50 5.30 

Digital Twin Algorithm 159 5.30 1.94 

Through analysis of Table 7, it is found that when the number of iterations is 

14, the traditional PID algorithm consumes a time of 6.50 s with an average 

trajectory error of 5.30 degrees. In contrast, the digital twin algorithm, with a number 

of iterations of 159, consumes a time of 5.30 s and achieves an average trajectory 

error of 1.94 degrees. Therefore, it can be concluded that the digital twin algorithm 

can significantly improve the performance of the exoskeleton prototype, playing a 

crucial role in rehabilitation training for patients with lower limb impairments. 

4. Conclusion 

This paper successfully studies and implements a digital twin-based lower limb 

rehabilitation exoskeleton system, which is significantly innovative and practical in 

the field of rehabilitation. By constructing a digital twin model of lower limb 

rehabilitation exoskeleton, we realize the precise planning and optimization of 
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patients’ gait trajectory, which not only improves the pertinence and effectiveness of 

rehabilitation training, but also provides patients with a more comfortable and 

personalized rehabilitation experience. The experimental results show that the 

system can accurately capture and analyze the patient’s gait characteristics and 

generate a personalized gait trajectory according to the patient’s posture and motion 

scene. After several iterations of optimization, the system gradually eliminates the 

Angle error and improves the accuracy of the gait trajectory, thus ensuring the 

quality and effect of the rehabilitation training. In addition, the system also has real-

time monitoring and feedback functions, which can monitor the movement state of 

the exoskeleton prototype in real time, and feedback the data to the system for 

iterative optimization. This virtual-real interaction method not only improves the 

intelligence level of the system, but also provides more reliable and accurate data 

support for rehabilitation training. But due to the lack of experimental conditions and 

time, this paper still has certain limitations, mainly embodied in: First, in view of the 

lower limb rehabilitation exoskeleton prototype can use digital twin technology to 

develop other functions, subsequent design can consider the digital twin model of 

human body, through human body and exoskeleton interaction between virtual 

human-machine coupling model. Second, the designed digital twin system is only for 

one exoskeleton device, and the utilization rate of the system is relatively low. The 

subsequent design can consider the linkage control of multiple exoskeleton devices 

to improve the use efficiency of the overall system. Looking into the future, we will 

continue to deeply study the application potential of digital twin technology in the 

field of rehabilitation, and explore more innovative rehabilitation methods and 

means. It will further improve the function and performance of the system, improve 

the accuracy and real-time performance of gait planning, and provide better 

rehabilitation services for patients. 
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