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Abstract: In order to cope with biomechanical nonlinear optimization problems and explore 

the application of deep learning methods, the study focuses on the performance of neural 

network-based optimization models in complex biomechanical systems. By using a hybrid 

neural network structure, the optimization algorithm processes high-dimensional data to 

accurately model biomechanical nonlinear relationships. The experimental results show that 

the deep learning model shows significant improvement in multivariate biomechanics 

prediction compared to traditional methods, with the prediction error decreasing to less than 

10% and the optimization efficiency increasing by more than 40%. Especially in the field of 

joint mechanics and skeletal implant design, deep learning is able to accurately capture 

complex nonlinear laws, which greatly improves the stability and reliability of the results. 
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1. Introduction 

Biomechanical nonlinear optimization problems have long been a challenge in 

mechanics, medicine and engineering. Traditional methods face significant difficulties 

in dealing with high-dimensional, complex biomechanical systems, especially in 

modeling variable biomechanical features and nonlinear relationships. Deep learning, 

as a tool capable of automatically learning data features and optimizing complex 

systems, has demonstrated superior performance in motion analysis, personalized 

therapy, and implant design. With hybrid neural network architecture and efficient 

optimization algorithms, the deep learning approach not only improves the prediction 

accuracy, but also provides new ideas and solutions for solving biomechanical 

nonlinear optimization problems. 

2. Current status of deep learning application in biomechanical 

optimization 

The application of deep learning in biomechanical optimization has gradually 

become a core tool for solving nonlinear optimization problems. Deep learning 

models, especially Convolutional Neural Networks (CNN), Generative Adversarial 

Networks (GAN), and Long Short-Term Memory Networks (LSTM), have 

demonstrated excellent capabilities in dealing with complex biomechanical problems 

[1]. These models are able to automatically extract features and identify nonlinear 

relationships in biological systems through a large amount of experimental data, which 

greatly improves optimization efficiency and accuracy. In motion analysis, deep 
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learning can analyze the dynamics of human motion and optimize the nonlinear 

behavior of muscle loading and joint motion by training optimization algorithms. In 

addition, Deep Reinforcement Learning (DRL) is also widely used in the fields of 

personalized treatment plan optimization and implant design, which can effectively 

predict and adjust system parameters. Deep learning methods further optimize the 

solution process of nonlinear optimization problems through improved adaptive 

algorithms, enabling more efficient solutions in complex biomechanical systems [2]. 

3. Deep learning biomechanical nonlinear optimization model 

construction 

3.1. Hybrid neural network architecture design 

Hybrid neural network architecture design is a key aspect in biomechanical 

nonlinear optimization models [3]. In this architecture, multiple neural network 

models are usually combined to cope with the diversity and complexity in 

biomechanical systems. First, Convolutional Neural Networks (CNNs) are used to 

process image and spatial data, such as dynamic image analysis of human motion, to 

capture local features and extract spatial information of joints and muscles. Then, 

Long Short-Term Memory (LSTM) networks are used to process temporal data, such 

as time series of muscle activities, capable of capturing long-term dependencies and 

dynamic trends. To further improve the performance of the model, Generative 

Adversarial Networks (GANs) can be introduced to optimize the generation of input 

data and enhance the robustness of the model under uncertainty and noise interference 

[4]. In addition, the hybrid architecture should also incorporate reinforcement learning 

(RL) techniques for automated tuning of the optimization parameters to enhance the 

adaptability of the model in biomechanical optimization problems. Through this multi-

level and multi-model design, the network is able to improve the accuracy and 

efficiency of optimization results while dealing with high-dimensional and complex 

data, and solve the nonlinear optimization problems that are difficult to cope with by 

traditional methods. 

3.2. Model feature extraction and characterization mechanism 

In the biomechanical nonlinear optimization model, the feature extraction and 

characterization mechanism play a crucial role, which directly affects the optimization 

accuracy and the generalization ability of the model. Local feature extraction of input 

data by convolutional neural network (CNN) can effectively capture the complex 

spatial relationships among joints, bones and muscles. For the feature extraction of 

time-series data, it is handled by the Long Short-Term Memory (LSTM) network, 

which is able to extract the dynamically changing features in the time-series data, 

especially in the analysis of muscle loading and movement trajectory to capture the 

long-term dependency relationship [5]. Further, combined with the self-attention 

mechanism (self-attention) in deep learning, it can enhance the model’s focus on key 

features and improve the system’s responsiveness to nonlinear changes. Expressed as 

an equation, the feature extraction process can be represented by the following 

equation: 
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where 𝑥𝑡 denotes the input data, ℎ𝑡−1 is the hidden state at the previous moment, 

𝑊ℎ  and min 𝑊𝑥  are the weight matrices associated with the hidden state and the 

input data, 𝑏 is the bias term, and 𝜎  is the activation function. The formulation 

shows how the LSTM can update the state based on the current input and historical 

information when processing time-series data. Through feature extraction, the model 

is able to generate an effective representation, which in turn supports the subsequent 

nonlinear optimization process [6]. 

3.3. Objective function construction for nonlinear optimization 

In biomechanical nonlinear optimization, the construction of the objective 

function is the core of the optimization process, which determines the direction and 

convergence of the optimization. When constructing the objective function, it is 

usually necessary to comprehensively consider several factors, including physical 

constraints, laws of motion and mechanical properties. The objective function can be 

defined as: 

𝐿 = ∑ (‖𝐹𝑡 − 𝐹̂𝑡‖
2

+ 𝜆‖𝑃𝑡 − 𝑃̂𝑡‖
2

)

𝑇

𝑡=1

 (2) 

where 𝐹𝑡 is the mechanical load at the time 𝑡 step, 𝐹̂𝑡 is the load predicted by the 

model, 𝑃𝑡  and 𝑃̂𝑡  are the desired and predicted joint displacements, respectively, 

and 𝜆 is a balance coefficient that regulates the weighting between mechanical and 

displacement errors. By minimizing this objective function, it is possible to minimize 

the prediction errors in the mechanical properties and kinematic trajectories of the 

system. In addition, when considering nonlinear behavior, the objective function often 

includes constraints. The following class of constraints can be introduced: 

0x t += ttt bAC
 (3) 

where 𝐴𝑡 is the matrix of constraints associated with each moment 𝑡, 𝑥𝑡 denotes 

the optimization variables (e.g., joint angle, muscle tension, etc.), and 𝑏𝑡 is a constant 

term. Introducing such constraints ensures that the optimization solution is within a 

reasonable biomechanical range and avoids unphysical solutions. The construction of 

the objective function should not only focus on the accuracy, but also ensure the 

feasibility and stability of the solution, so that the optimization process can effectively 

deal with the nonlinear characteristics in biomechanical systems [7]. In order to more 

intuitively demonstrate the characteristics of the objective function and its changes 

under different parameters, the following graphs are plotted. Figure 1 demonstrates 

the mechanical load, predicted load, desired joint displacement, predicted joint 

displacement, and the trend of the objective function values over time steps. 
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Figure 1. Trend of biomechanical nonlinear optimization objective function changes. 

3.4. Model parameter learning and iterative optimization strategy 

The learning of model parameters and iterative optimization strategy directly 

determine the efficiency and accuracy of the optimization algorithm. In order to 

effectively solve this problem, the gradient descent method and its variants, such as 

the Adam optimizer, are often used to dynamically adjust the model parameters during 

the learning process. The learning objective of the model parameters is to continuously 

adjust the weights in the network to approximate the optimal solution by minimizing 

the objective function [8]. In the optimization process, the gradient information is the 

core basis for adjusting the model parameters, which can be expressed by the following 

equation: 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝛻𝑤𝐿(𝑤𝑡) (4) 

where 𝑤𝑡 is the model parameters at the 𝑡-th iteration, 𝜂 is the learning rate, and 

𝛻𝑤𝐿(𝑤𝑡) is the gradient of the objective function under the current parameters. In 

order to find the local optimal solution more efficiently, optimization algorithms with 

momentum are often introduced, which makes the update of parameters not only 

depend on the current gradient, but also take into account the information of the 

historical gradient, thus accelerating the convergence: 

𝑣𝑡+1 = 𝛽𝑣𝑡 + (1 − 𝛽)𝛻𝑤𝐿(𝑤𝑡) (5) 

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡+1 (6) 

where 𝑣𝑡 is the momentum of the gradient and 𝛽 is the momentum coefficient. In 

this way, the model can effectively avoid local minima and approximate to the global 

optimal solution. In order to cope with complex nonlinear problems, a regularization 

term is often also added in the optimization process to prevent the occurrence of 

overfitting phenomenon. The inclusion of regularization terms can be implemented in 

the following form: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿(𝑤𝑡) + 𝜆‖𝑤𝑡‖2 (7) 
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where 𝜆 is the regularization coefficient, which controls the degree of influence of 

the regularization term. Through this strategy, the generalization ability of the model 

can be improved while ensuring the model complexity. In summary, the model 

parameter learning and iterative optimization strategy not only includes gradient 

descent and momentum methods, but also ensures that the model is able to find 

accurate and stable solutions in complex biomechanical nonlinear optimization 

problems through regularization and multilevel optimization mechanisms [9]. 

4. Experimental results and analysis 

4.1. Experimental data sets and pre-processing 

In the experimental dataset and preprocessing phase, several well-sourced and 

representative biomechanical datasets were selected to cover diverse biomechanical 

features and experimental scenarios. These datasets include a combination of publicly 

available datasets and self-collected data covering gait analysis, electromyographic 

signals (EMG) during running, joint angle data, mechanical loads, and biomechanical 

simulation data. The gait analysis data were obtained from a public database covering 

subjects of different genders, age groups, and exercise forms; the EMG signal data 

were acquired by a high-precision EMG acquisition instrument, which mainly 

recorded the activities of different muscle groups during running and standing; and the 

simulation data were derived from the virtual experimental results generated by a 

multi-physics field simulation platform, which included the mechanical responses 

under different boundary conditions [10]. 

In order to ensure the consistency of the data and the stability of the model input, 

the dataset undergoes a series of rigorous pre-processing: the collected data are 

denoised using median filtering and wavelet transforms to eliminate environmental 

noise and equipment errors; for missing data, the data are supplemented by 

interpolation based on the K-nearest-neighbor algorithm in order to minimize the 

potential impact on the training of the model; and all the numerical features are 

normalized (in the range of 0–1) to eliminate different magnitudes. 1) to eliminate the 

computational bias caused by different magnitudes, so as to improve the stability and 

generalization ability of the model in the training stage. The above detailed data 

sources and preprocessing procedures ensure the scientific and reproducible nature of 

the experiments, providing a solid data foundation for efficient training and reliable 

evaluation of the model. Table 1 demonstrates the experimental datasets used and their 

main features: 

Table 1. Experimental data sets and their main features. 

Dataset Name Data Type Sample Size Feature Dimensions Processing Method 

Gait Analysis Data Joint Angles, Speed 1000 6 Denoising, Normalization 

EMG Signal Data Electromyography Signals 800 8 Imputation, Denoising 

Running Data Joint Angles, Mechanical Load 1200 10 Normalization, Standardization 

Biomechanical Simulation Data Mechanical Simulation Data 1500 12 Standardization, Denoising 

The experimental dataset covers a variety of data types related to biomechanics 
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and motion analysis, demonstrating different sensor applications and data processing 

techniques. In the gait analysis dataset, joint angle and velocity are taken as the core 

features, with 1000 samples and 6 feature dimensions. denoising and normalization 

are used to improve the stability and comparability of the data, especially when the 

gait varies greatly, and to effectively reduce the influence of noise on model training. 

The EMG signal dataset contains 800 samples and 8 feature dimensions, which are 

mainly the signals of muscle electrical activity. the complementation and denoising 

process is designed to solve the problems of missing signals and noise interference, 

and to enhance the representativeness and reliability of the signals. 

The running dataset further explores the biomechanical performance during 

exercise by collecting joint angles and mechanical loads. 1200 samples and 10 feature 

dimensions can provide rich dynamic change information, and the normalization and 

standardization process help to reduce the variability between different individuals, 

thus achieving wider generalizability and applicability. Finally, the biomechanical 

simulation dataset, which provides 1500 samples with 12 feature dimensions, is the 

result of mechanical simulation output. The normalization and denoising process 

ensures the accuracy of the simulation data and the stability of the data, especially 

when the simulation model is complex, to avoid bias affecting the accuracy of the 

results. Each of these datasets has unique acquisition methods and processing 

requirements, covering multiple aspects of biomechanics research, providing a rich 

and reliable basis for modeling and analysis in related fields [11]. 

4.2. Model performance evaluation metrics 

In order to comprehensively assess the performance of the model in 

biomechanical nonlinear optimization, a variety of key evaluation metrics were 

selected, including mean square error (MSE), mean absolute error (MAE), peak 

signal-to-noise ratio (PSNR), and model runtime (RT). These metrics 

comprehensively reflect the prediction accuracy, stability and computational 

efficiency of the model. In the experiments, the performance of the model was verified 

for several datasets, and the indicators are shown in Table 2: 

Table 2. Results of model performance evaluation indicators. 

Dataset Name MSE (× 10−3) MAE (× 10−2) PSNR (dB) RT (ms) 

Gait Analysis Data 0.85 0.65 32.5 5.2 

EMG Signal Data 1.02 0.78 30.2 6.8 

Running Data 0.78 0.62 34.1 4.7 

Biomechanical Simulation Data 0.68 0.58 35.4 4.3 

Table 2 shows the performance evaluation metrics of the model on four different 

datasets, including mean square error (MSE), mean absolute error (MAE), peak signal-

to-noise ratio (PSNR), and response time (RT). These metrics reflect the error level, 

image quality, and real-time processing capability of the model under different tasks. 

On the gait analysis dataset, the model has an MSE of 0.85 × 10−3, an MAE of 0.65 × 

10−2, a PSNR of 32.5 dB, and a response time of 5.2 ms. higher PSNR values indicate 

that the model has better image quality on this dataset, while relatively low MSEs and 
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MAEs indicate that the moderate prediction error of the model. A response time of 5.2 

ms on the other hand indicates that the model has a more desirable computational 

efficiency and is able to complete the prediction within a certain period of time, 

making it suitable for tasks that require real-time feedback. 

The EMG signal dataset performs slightly less well, with an MSE of 1.02 × 10−3, 

an MAE of 0.78 × 10−2, a PSNR of 30.2 dB, and a response time of 6.8 ms. Although 

the lower PSNR value means that the model’s image quality is degraded on this 

dataset, it still maintains a more stable computational performance. The increase in 

MSE and MAE indicates that the EMG signal data is more complex and the model has 

a higher error in processing this data, which may be affected by signal noise and 

complex patterns. The increase in response time indicates a relatively high 

computational complexity. The running dataset has the best performance among all 

the datasets with MSE of 0.78×10−3, MAE of 0.62×10−2, PSNR of 34.1 dB, and 

response time of 4.7 ms. the relatively low error and high PSNR values indicate that 

the model has high prediction accuracy on this dataset. better image quality and faster 

response time, making it suitable for use in real-time applications. The lower 

computation time of this dataset implies that the model can process running data 

efficiently, especially in high-frequency data acquisition and real-time feedback 

requirements, showing good adaptability. 

The biomechanical simulation dataset also performed well, with an MSE of 0.68 

× 10−3, an MAE of 0.58 × 10−2, a PSNR of 35.4 dB, and a response time of 4.3 ms. 

this dataset had the smallest MSE and MAE of all the datasets, suggesting that the 

model had the lowest and has high accuracy. The higher PSNR value further indicates 

that the image quality is excellent and is suitable for tasks that require high accuracy. 

Meanwhile, the response time is only 4.3 ms, which demonstrates excellent real-time 

processing capability, enabling the model to operate effectively in high-load 

environments [12]. The biomechanics simulation dataset and the running dataset excel 

in terms of error, image quality, and real-time performance, making them particularly 

suitable for applications requiring real-time feedback and high accuracy. The gait 

analysis dataset, on the other hand, shows moderate performance and is suitable for 

general applications. The EMG signal dataset may require further optimization during 

processing due to the high signal complexity, relatively large error in the model, and 

long response time. 

4.3. Comparison experiment of different algorithms 

In conducting the comparison experiments of different algorithms, a variety of 

common optimization methods were used for comparison in order to fully assess the 

performance of each algorithm in biomechanical nonlinear optimization problems. 

These methods include classical gradient descent, gradient descent with momentum 

(Momentum), Adam optimization algorithm, and adaptive gradient algorithm 

(Adagrad). The main goal of the experiments is to explore the differences in the 

performance of these algorithms in biomechanical nonlinear optimization problems 

and to provide a scientific basis for selecting the optimal algorithm. The performance 

of an optimization algorithm usually depends on key dimensions such as its 

convergence speed, prediction accuracy, and computational efficiency on a particular 
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dataset [13]. 

Selection of an appropriate optimization algorithm is crucial for solving complex 

biomechanical system problems. The experiments are trained and tested using multiple 

datasets to simulate the diverse requirements of real-world applications, and focus on 

the key performance metrics of each algorithm, including mean square error (MSE), 

mean absolute error (MAE), and computation time (RT). Experimental results on the 

gait analysis dataset show that there are significant differences in the performance of 

different algorithms in terms of convergence speed and accuracy. The classical 

gradient descent method, despite its simplicity, performs slowly on nonlinear 

problems; the gradient descent method with momentum improves the convergence 

speed by introducing a momentum term; Adam’s algorithm outperforms in most of 

the metrics by virtue of its mechanism of combining momentum and adaptive learning 

rate, while Adagrad’s algorithm has some advantages in learning rate adjustment but 

may suffer from premature convergence. Table 3 shows in detail the specific 

performance comparison of each algorithm on the gait analysis dataset, which 

provides intuitive data support and reliable reference basis for the selection of 

optimization algorithms. 

Table 3. Experimental results of different algorithms comparison. 

Optimization Algorithm MSE (× 10−3) MAE (× 10−2) Computation Time (ms) Convergence Speed (Epoch) 

Gradient Descent 1.05 0.72 10.2 150 

Momentum Gradient Descent 0.98 0.68 8.5 140 

Adam Optimization 0.85 0.65 5.2 120 

Adagrad 1.1 0.75 12 160 

Table 3 shows the experimental results of four common optimization algorithms 

on the same dataset, including Gradient Descent, Momentum Gradient Descent, Adam 

Optimization Algorithm, and Adagrad. The performance of each algorithm is 

compared by metrics such as MSE, MAE, computation time, and convergence speed. 

From the perspective of the gradient vanishing and gradient explosion problems, the 

significant advantage of the Adam optimization algorithm lies in its ability to 

dynamically adjust the learning rate so that each parameter can be updated based on 

the first- and second-order momentum of its gradient, avoiding the problem of too 

small or too large gradients. This mechanism allows Adam to perform optimally in 

high-dimensional nonconvex problems, especially in biomechanical simulation 

datasets containing a large amount of noise, with MSEs and MAEs of 0.62 × 10−3 and 

0.55 × 10−2, respectively, a computation time of 6.8 ms, and a convergence rate of 130 

Epochs. In addition, the Adam’s time complexity is O(n)O(n)O(n), which is 

comparable to that of the leading momentum gradient descent method, but its space 

complexity is slightly higher at O(2n)O(2n)O(2n), which is due to its need to 

additionally store the estimates of the momentum and adaptive gradient. 

In contrast, driven momentum gradient descent utilizes only the first-order 

momentum in parameter updating, which reduces the gradient oscillation problem to 

some extent, but still has a low convergence efficiency on complex datasets, especially 

in the multivariate-dependent running dataset, which has an MSE of 1.0 × 10−3 and a 
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convergence rate of 170 Epochs. Classical gradient descent is constrained by a fixed 

learning rate, it is difficult to adapt to the complex dynamic changes of the objective 

function, and it tends to have slow convergence in the gradient vanishing region, 

especially in the high-dimensional biomechanical simulation data, which exhibits a 

long computation time (11.5 ms) and a high error (MSE of 0.75 × 10−3). Although 

Adagrad avoids the initial gradient problem through adaptive learning rate, its learning 

rate gradually decreases to a very low value during long-term training, resulting in 

limited convergence speed, which is 190 Epoch on the novel motion dataset, much 

lower than that of Adam’s 140 Epoch. In contrast, Adagrad performs relatively poorly, 

with an MSE of 1.1 × 10−3, MAE of 0.75 × 10−2, computation time of 12 ms, and 

convergence speed of 160 Epoch. Although Adagrad avoids some problems by 

adaptively adjusting the learning rate, it is prone to too small learning rate during long-

term training, which makes the convergence speed of the algorithm limited. In 

addition, the higher computation time and slower convergence speed also make 

Adagrad less applicable in complex tasks [14]. 

Adam optimization algorithm has a clear advantage among these four 

optimization methods, being able to achieve a lower error level in a shorter period of 

time, with a faster convergence rate and higher adaptability. Driven gradient descent 

is the next best, showing a better balance, especially in terms of convergence speed 

and computation time. Gradient descent, although simple, is less efficient when 

dealing with complex data and is prone to falling into local optimality. Adagrad, on 

the other hand, shows a greater disadvantage after many iterations, especially in terms 

of convergence speed and computational efficiency, indicating that it is not suitable 

for large-scale or complex tasks. In practical applications, the Adam optimization 

algorithm is the most recommended choice, especially in deep learning and complex 

model training, providing superior performance. In addition, to further analyze the 

performance of the algorithm on other types of datasets, similar comparison 

experiments are conducted on the running dataset and the biomechanical simulation 

dataset, and the results are shown in Table 4. 

Table 4. Comparison of algorithms on biomechanical simulation dataset. 

Optimization Algorithm Dataset MSE (× 10−3) MAE (× 10−2) 
Computation Time 

(ms) 

Convergence Speed 

(Epoch) 

Gradient Descent 

Running Data 

1.1 0.78 15 180 

Momentum Gradient Descent 1 0.74 12.5 170 

Adam Optimization 0.9 0.66 9 140 

Adagrad 1.15 0.8 18 190 

Gradient Descent 

Biomechanical 

Simulation Data 

0.75 0.6 11.5 150 

Momentum Gradient Descent 0.68 0.58 9.2 140 

Adam Optimization 0.62 0.55 6.8 130 

Based on the algorithm comparison results for the biomechanics simulation 

dataset in Table 4, the performance of different optimization algorithms on the 

running data and biomechanics simulation dataset can be analyzed in detail. For the 

running dataset, the gradient descent method performs with MSE of 1.1 × 10−3 and 
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MAE of 0.78 × 10−2, with a computation time of 15 ms and a convergence rate of 180 

Epochs. The driven gradient descent optimization algorithm performs slightly better 

in reducing the MSE and MAE, with 1.0 × 10−3 and 0.74 × 10−2, while the computation 

time is reduced to 12.5 ms and the convergence speed is improved to 170 Epochs. The 

Adam optimization algorithm performs the best in all metrics, with a further reduction 

in MSE and MAE to 0.9 × 10−3 and 0.66 × 10−2, with the shortest computation time of 

9 ms and a better convergence speed than the previous two at 140 Epoch. In contrast, 

the Adagrad algorithm, while having a smaller MSE (1.15×10−3), has a higher MAE 

of 0.8×10−2 and the time is the longest (18 ms) with a convergence rate of 190 Epoch, 

which is a poor performance. 

For the biomechanical simulation dataset, the gradient descent method has an 

MSE of 0.75 × 10−3, an MAE of 0.6 × 10−2, a computation time of 11.5 ms, and a 

convergence speed of 150 Epoch. The driven gradient descent algorithm further 

improves the optimization with an MSE of 0.68 × 10−3 and MAE of 0.58 × 10−2, with 

a reduced computation time of 9.2 ms and a convergence speed of 140 Epoch. The 

Adam optimization algorithm, on the other hand, performs the best in both metrics, 

with an MSE of 0.62 × 10−3, an MAE of 0.55 × 10 The Adam optimization algorithm 

has the best performance on these two data sets, with MSE of 0.62 × 10−3 and MAE 

of 0.55 × 10−2, and the shortest computation time of 6.8 ms and a convergence speed 

of 130 Epoch, which reflects its high efficiency on this type of dataset. The Adam 

optimization algorithm has the best performance on these two datasets in a combined 

manner, especially in the aspects of computation time and convergence speed, and it 

is suitable for the biomechanical simulation tasks that require fast training and efficient 

optimization [15]. The performance of driven gradient descent is also more balanced 

in terms of convergence speed and computational efficiency, which is a better 

compromise. The gradient descent method, although simple, is less efficient on such 

complex datasets, especially in terms of convergence speed and computational time. 

4.4. Validation of model robustness and generalization ability 

Model robustness and generalization ability are key performance metrics in 

complex biomechanical nonlinear optimization tasks. To deeply analyze the effect of 

noise, the study focuses on the interference of common noise types (e.g., Gaussian 

noise vs. salt-and-pepper noise) on the gradient computation, parameter update, and 

optimization results. Gaussian noise disturbs the gradient direction in a randomly 

distributed manner, causing the parameter update path to deviate from the optimal 

solution and thus slowing down the convergence process. In contrast, salt and pepper 

noise, due to its sparse and discrete nature, is prone to introduce extreme outliers in 

the input data, thus significantly increasing the volatility of the objective function and 

affecting the stability of the optimization process. To cope with the noise problem, 

noise reduction techniques such as wavelet transform and median filter are introduced, 

and combined with the adaptive noise modeling method to dynamically adjust the 

input feature weights, which effectively mitigates the negative impact of noise on the 

model performance. In addition, to address the challenge of the adaptability of 

optimization methods to the noise environment, comparison experiments of various 

optimization algorithms are conducted, including gradient descent, momentum 
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method, Adam optimization algorithm and Adagrad. 

The results show that the Adam optimization algorithm, by virtue of the adaptive 

learning rate adjustment mechanism and the momentum strategy, is able to achieve 

more stable gradient updating and faster convergence speed, and exhibits superior 

robustness under higher noise intensity. By systematically analyzing the model 

performance under noise interference and proposing corresponding optimization 

strategies, a new technical path is provided for solving the biomechanical nonlinear 

optimization problem in complex noise environments. The generalization ability of 

the model is also examined by comparing its performance on different datasets. These 

datasets include motion data with different pre-processing, EMG signal data, and 

mechanical response data from different organisms. Table 5 shows the performance 

of the models on noisy datasets and their robustness changes compared to the original 

datasets. 

Table 5. Robustness performance of the model on noisy datasets. 

Noise Type Dataset MSE (× 10−3) MAE (× 10−2) 
Computation Time 

(ms) 

Convergence Speed 

(Epoch) 

No Noise 

Running Data 

0.78 0.62 4.7 120 

Gaussian Noise (0.05) 1.03 0.72 6.5 130 

Salt and Pepper Noise (0.1) 1.15 0.76 7.2 135 

No Noise 

Biomechanical 

Simulation Data 

0.68 0.58 4.3 115 

Gaussian Noise (0.05) 0.88 0.67 5.9 125 

Salt and Pepper Noise (0.1) 1.02 0.71 6.3 130 

Table 5 shows the robustness performance of different noise types on the model 

on the running dataset and the biomechanics simulation dataset. In the absence of 

noise, the model has an MSE of 0.78 × 10−3 and an MAE of 0.62 × 10−2 on the running 

dataset, with a computation time of 4.7 ms and a convergence rate of 120 Epoch, which 

is a better performance. While when Gaussian noise (0.05) is added, the MSE and 

MAE rise to 1.03 × 10−3 and 0.72 × 10−2 respectively, the computation time increases 

to 6.5 ms, and the speed of convergence slightly improves to 130 Epoch, which 

indicates that the Gaussian noise has a relatively small effect on the model, but it can 

still significantly increase the error and the computational burden. After adding salt 

and pepper noise (0.1), the MSE further increases to 1.15 × 10−3, the MAE is 0.76 × 

10−2, the computation time increases to 7.2 ms, and the convergence speed is 135 

Epoch, showing a more obvious performance degradation, which indicates that salt 

and pepper noise has a large negative impact on the model robustness. 

For the biomechanical simulation dataset, the MSE of the model without noise is 

0.68 × 10−3, the MAE is 0.58 × 10−2, the computation time is 4.3 ms, and the 

convergence speed is 115 Epoch. under the influence of Gaussian noise, the MSE 

increases to 0.88 × 10−3, and the MAE is 0.58 × 10−2, showing a more obvious 

performance degradation. −3, the MAE is 0.67 × 10−2, the computation time is slightly 

increased to 5.9 ms, and the convergence speed is 125 Epoch, which shows that the 

Gaussian noise has a certain effect on the model’s performance, but still maintains a 

good robustness. With the addition of salt and pepper noise (0.1), the MSE and MAE 

increased to 1.02 × 10−3 and 0.71 × 10−2, respectively, with a computation time of 6.3 
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ms and a convergence rate of 130 Epoch. Compared with the running dataset, the 

performance degradation of the biomechanical simulation dataset in the presence of 

noise interference was relatively compared to the running dataset, indicating that the 

model is robust in handling such data. Although the addition of noise significantly 

affects the performance of the model, especially the salt and pepper noise, the model 

maintains a relatively stable performance under Gaussian noise. In addition, the 

generalization ability is validated by applying the training model to an unseen test 

dataset. Table 6 shows the performance of the model’s generalization ability on 

different datasets, focusing on the model’s prediction accuracy under diverse tasks. 

Table 6. Model’s generalization ability performance on different datasets. 

Dataset Name MSE (× 10−3) MAE (× 10−2) Computation Time (ms) Convergence Speed (Epoch) 

Gait Analysis Data 0.85 0.65 5.2 120 

EMG Signal Data 1.02 0.78 6.8 130 

Running Data 0.78 0.62 4.7 115 

Biomechanical Simulation Data 0.68 0.58 4.3 110 

New Sports Dataset 1.1 0.8 7.5 140 

Table 6 demonstrates the model’s generalization ability performance on different 

datasets. The datasets include gait analysis data, EMG signal data, running data, 

biomechanical simulation data, and novel exercise datasets, and the MSE, MAE, 

computation time, and convergence speed performances of each dataset reflect the 

adaptability and efficiency of the model under different tasks. The gait analysis dataset 

has an MSE of 0.85 × 10−3, an MAE of 0.65 × 10−2, a computation time of 5.2 ms, and 

a convergence speed of 120 Epoch, which indicates that this dataset performs 

moderately well in terms of the model’s generalization ability during training. In 

contrast, the MSE and MAE of the EMG signal dataset were 1.02 × 10−3 and 0.78 × 

10−2, respectively, and the computation time increased to 6.8 ms with a convergence 

speed of 130 Epoch, showing that this dataset has a higher complexity, a larger model 

training time and error, and a relatively poorer generalization ability. 

The running dataset has an MSE of 0.78 × 10−3 and an MAE of 0.62 × 10−2, with 

a computation time of 4.7 ms and a convergence speed of 115 Epoch, demonstrating 

a relatively good generalization ability, and the model is able to quickly adapt to this 

dataset and achieve a low error. The biomechanical simulation dataset performs even 

better, with an MSE of 0.68 × 10−3, an MAE of 0.58 × 10−2, a computation time of 4.3 

ms, and a convergence speed of 110 Epoch, showing that this dataset is relatively 

simple, and that the model is able to converge in a relatively short time, demonstrating 

a strong generalization ability. The new sports dataset has an MSE of 1.1 × 10−3, an 

MAE of 0.8 × 10−2, a computation time of 7.5 ms, and a convergence speed of 140 

Epoch. The higher error and longer training time of this dataset show that the model 

may need more tuning and training when faced with the new dataset, and has a weaker 

generalization ability is weak. The model performs best on the running data and 

biomechanical simulation dataset, showing strong generalization ability, while the 

model performs relatively poorly on the EMG signal data and the novel exercise 

dataset, which may require further optimization. 
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5. Conclusion 

Although the application of deep learning to nonlinear optimization problems in 

biomechanics provides new perspectives and effective tools for modeling and solving 

complex systems, especially when dealing with high-dimensional and nonlinear 

features, it shows significant advantages. However, certain limitations still exist. 

When dealing with extreme noise and large-scale datasets, the robustness and 

computational efficiency of the model need to be further improved. The current 

method exhibits a significant increase in error (MSE increases from 0.68 × 10−3 in the 

noiseless case to 1.02 × 10−3) with high salt and pepper noise intensity, indicating that 

the sensitivity of the existing model to anomalous data points still needs to be 

improved. In the future, the stability of the model in high-noise environments can be 

improved by introducing more efficient noise reduction algorithms, such as dynamic 

noise modeling or adversarial data enhancement techniques. In addition, in the face of 

rapidly growing large-scale data, the time complexity and memory requirement of 

optimization algorithms may become a bottleneck, and multi-model integration and 

hybrid optimization strategies may be able to provide a solution. By combining the 

advantages of different optimization algorithms (e.g., Adam, RMSProp, and 

momentum method) and constructing a collaborative optimization framework, it is 

expected to improve the convergence speed and accuracy of the model, and the 

application scope is mainly focused on simulation and motion data analysis. 

Future research can consider designing hybrid architectures with higher 

scalability and exploring multimodal data fusion methods to enhance model 

adaptability. Meanwhile, for the performance bottlenecks in extreme scenarios, the 

combination of adaptive optimization algorithms and reinforcement learning can be 

developed to further improve the robustness and efficiency of the model, and provide 

more comprehensive technical support for the accurate modeling and practical 

deployment of biomechanical systems. 
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