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Abstract: This study explores the intersection of biomechanics and sustainable animal 

husbandry, with a focus on optimizing animal health and productivity to promote ecological 

breeding practices. By integrating biomechanical principles with ecological breeding 

strategies, we aim to enhance both farm efficiency and environmental sustainability. Through 

an in-depth analysis of the mechanical forces involved in animal movement, posture, and 

interactions with their environment, we seek to design systems that improve animal welfare 

and reduce stress, which in turn enhances productivity. We emphasize the role of 

biomechanics in creating more efficient feeding systems, ergonomic housing, and 

transportation methods, all of which contribute to reducing injuries and improving overall 

livestock management. Moreover, we propose that biomechanical models can be applied to 

farm operations to optimize both animal health and ecological balance. This interdisciplinary 

approach not only improves animal welfare but also promotes sustainable farming practices 

that align with environmental conservation goals. By integrating animal biomechanics with 

ecological breeding techniques, this research highlights the potential for more efficient, 

sustainable breeding practices that support both economic growth and ecological preservation, 

thus advancing the long-term goals of sustainable development in animal husbandry. 

Keywords: biomechanics; animal husbandry; sustainable agriculture; ecological 
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1. Introduction 

Biomechanics, the study of the mechanical aspects of living organisms, has 

long been a vital field in understanding the physical forces and motions that 

influence both human and animal performance. Its application in animal husbandry 

and sustainable agriculture has become increasingly important in the quest to 

optimize farm productivity, enhance animal welfare, and promote ecological 

sustainability [1–3]. As the global population continues to rise, the demand for more 

efficient, environmentally conscious farming practices has never been greater. In this 

context, biomechanics offers critical insights that can drive innovations in livestock 

management, animal care, and the design of farming systems. 

The term “biomechanics” encompasses a range of interdisciplinary topics, from 

the mechanics of muscle movement to the forces exerted on bones and joints under 

varying conditions. In the agricultural realm, biomechanical principles are applied to 

understand how animals interact with their environment, whether in terms of 

locomotion, load-bearing, or ergonomic considerations [4,5]. This understanding is 

essential for designing farming systems and environments that maximize the health, 

comfort, and productivity of livestock while minimizing environmental impact. 
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One of the most significant applications of biomechanics in animal husbandry is 

the design and improvement of housing systems for livestock. The mechanical forces 

acting on animals, particularly in confined spaces, can affect their mobility, comfort, 

and overall well-being. For instance, poorly designed stalls or pens can lead to stress, 

injuries, or discomfort, which ultimately reduce the productivity and health of the 

animals [6,7]. Through biomechanical analysis, it is possible to design structures that 

allow animals to move freely, reducing stress and injury while promoting better 

overall health. This design consideration also extends to the flooring, which needs to 

be optimized for traction, comfort, and ease of movement, thereby reducing the risk 

of slips, falls, and joint stress. 

In addition to housing, biomechanics is instrumental in understanding and 

improving animal movement and behavior. Studies of animal gait, for example, help 

identify potential issues related to lameness or musculoskeletal disorders, which are 

common in commercial farming operations. By applying biomechanical principles to 

the study of these issues, it becomes possible to identify early signs of injury or 

discomfort, enabling timely intervention and prevention. For example, 

biomechanical analysis of cows’ movements can aid in detecting early-stage 

lameness, which, if left untreated, can lead to significant reductions in milk 

production and overall health [8]. 

Furthermore, biomechanics contributes to the optimization of livestock 

handling practices. Traditional animal handling techniques, particularly in large-

scale farming operations, often involve considerable physical strain on both the 

animals and the handlers. The application of biomechanical principles to animal 

handling systems can reduce unnecessary stress and injury to the animals, improving 

their welfare while also reducing the risk of injury to farm workers [9]. For example, 

the design of efficient and ergonomic tools for handling livestock—such as gates, 

chutes, and restraint devices—can minimize the physical effort required by the 

workers while ensuring the safety and comfort of the animals. 

Biomechanics is also central to the design of equipment used in agricultural 

practices. For example, the study of forces involved in the use of milking machines, 

feed dispensers, and other farming tools helps optimize these systems for both 

human and animal health. In the case of milking, for instance, biomechanical 

analysis can inform the design of milking machines that reduce stress on cows’ 

udders, leading to better milk yields and improved animal welfare [10]. 

On a broader scale, biomechanical principles can be applied to enhance 

environmental sustainability in agriculture. By designing farming systems and 

equipment that reduce energy consumption, labor input, and environmental impact, 

biomechanics can play a significant role in creating more sustainable farming 

practices. For instance, optimizing the efficiency of animal transport systems can 

minimize fuel use and carbon emissions, while improvements in livestock housing 

can reduce the need for excessive heating or cooling, further reducing energy 

consumption. 

In conclusion, the application of biomechanics to animal husbandry is a 

powerful tool for improving the welfare of livestock, enhancing productivity, and 

promoting sustainability. As farming practices continue to evolve in response to 

global challenges, biomechanics will remain a critical field for driving innovations 
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that balance efficiency with ecological and animal welfare considerations. Whether 

through improving animal housing, optimizing movement and behavior, or designing 

more sustainable farming systems, the contributions of biomechanics to modern 

agriculture are profound and far-reaching. 

2. Analysis based on empirical data 

Animal goods have a universal and distinct supply and demand under full 

market competition (Figure 1). The quality and consumption of animal products are 

highly valued by the State since they are a significant by-product of contemporary 

agriculture and a major source of income for a sizable portion of the populace. 

Measures like interim storage and placement are necessary for strategic animal 

products like pork in order to keep supply and demand balanced in the event of a 

market failure [11,12]. The propagation of early warning signals and the 

investigation and analysis of patterns in livestock development are also subject to 

increased demands as a result of these efforts. 

 

Figure 1. Supply and demand dynamics for livestock products. 

The degree of cattle sector concentration is currently measured using a number 

of techniques, including as the Gini coefficient, location entropy, industry 

concentration index, Herfindahl index, and others. The Herfindahl index typically 

depends on enterprise-specific data, the industrial concentration index has trouble 

accurately reflecting regional and geographical concentration, and the location 

entropy compensates for the drawbacks of the aforementioned techniques [13]. 

Furthermore, the impact of firm size is not taken into account by the Gini coefficient 

or the industrial concentration index. As a result, location entropy is a superior 

option. 

𝑄𝑃 =
𝑄𝑖/𝐺𝑖

𝐸𝑖/𝐽𝑖
 (1) 

The location entropy index measures the concentration of animal husbandry 

within different regions, calculated using the following formula: 
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𝐸 = − ∑

𝑛

𝑖=1

𝑝𝑖 × 𝑙𝑛(𝑝𝑖) (2) 

where: 𝑝𝑖  is the proportion of the animal husbandry industry in the 𝑙𝑛(𝑝𝑖) region 

relative to the total across all regions. n is the total number of regions being studied. 

This formula quantifies the concentration of industry in different regions. 

Higher values of EEE indicate a more concentrated industry, while values closer to 0 

suggest a more evenly distributed industry. Location entropy is a key metric to 

measure regional dominance and industry concentration, particularly useful for 

understanding imbalances in animal husbandry across provinces. 

The Cobb-Douglas production function is used in the analysis of how factors of 

production contribute to economic output, such as the relationship between cattle 

concentration and economic growth: This formula describes the relationship between 

inputs (labor and capital) and output, assuming constant returns to scale [14]. In the 

context of livestock production, the function can be used to model how different 

levels of resource allocation (such as labor or capital) influence economic growth, 

especially in relation to cattle concentration. 

𝑌 = 𝐴 × 𝐿𝛼 × 𝐾𝛽 (3) 

where: 

⚫ Y is the total output (economic growth or animal product output); 

⚫ A is the total factor productivity (TFP); 

⚫ L is the labor input; 

⚫ K is the capital input; 

⚫ 𝛼 and 𝛽 are the output elasticities of labor and capital, respectively. 

The basic panel regression model used to estimate the relationship between 

livestock concentration and economic factors can be expressed as: 

𝑌𝑖𝑡 = 𝛼 + 𝛽𝑋𝑖𝑡 + 𝛾𝑍𝑖𝑡 + 𝜖𝑖𝑡 (4) 

where: 

⚫ 𝑌𝑖𝑡 is the dependent variable (e.g., economic output, livestock concentration); 

⚫ 𝑋𝑖𝑡 represents the independent variables (e.g., concentration of livestock, labor 

input); 

⚫ 𝑍𝑖𝑡 represents control variables; 

⚫ 𝛼 is the intercept; 

⚫ 𝛽 and 𝛾 are the coefficients; 

⚫ 𝜖 is the error term; 

⚫ i denotes the individual unit (region, province); 

⚫ t denotes the time period. 

This formula represents a basic panel data model that accounts for both 

individual differences (across regions) and temporal effects (over time). It is useful 

in understanding how various factors affect livestock concentration and economic 

output over time, especially with data collected from multiple regions or provinces 

[15]. 
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The Variance Inflation Factor (VIF) is used to detect multicollinearity in 

regression models: 

𝑉𝐼𝐹 =
1

1 − 𝑅2
 (5) 

where: 

⚫ 𝑅2is the coefficient of determination for the regression of each independent 

variable on all other independent variables in the model. 

VIF quantifies how much the variance of a regression coefficient is inflated due 

to multicollinearity with other predictors. A high VIF indicates a high degree of 

multicollinearity, meaning that the independent variables are highly correlated, 

which can distort regression results. It is important to identify and address 

multicollinearity to ensure reliable estimation of coefficients [16]. 

Table 1 shows the specific changes in the animal husbandry industry’s 

concentration level in 11 provinces (autonomous areas) of the southern common 

forest region between 2000 and 2020. 

Table 1. The animal husbandry industry’s location entropy index. 

Particular year Zhejiang Fujian Guangxi Anhui Hunan Hubei Jiangxi Guizhou Sichuan Yunnan Jiangsu 

2000 1.35 2.54 2.05 1.03 1.58 1.28 1.58 0.47 0.99 1.99 0.36 

2005 2.04 2.08 2.78 1.58 1.47 0.56 1.58 0.55 0.87 1.74 0.36 

2010 2.26 2.14 2.36 1.09 1.66 0.84 1.82 0.75 0.89 1.89 0.36 

2015 2.23 1.88 2.14 0.82 1.28 0.79 1.87 0.68 0.56 1.36 0.36 

2020 2.26 1.87 1.91 0.82 1.98 0.84 1.98 0.84 0.74 1.26 0.68 

Table 1 demonstrates that there is no discernible pattern in the location entropy 

indices of the 11 provinces (autonomous areas) in the southern public forest area, 

and not all of them are clustered in the 0.3–3.33 range. Overall, the nine provinces 

(autonomous regions) of Zhejiang, Fujian, Guangxi, Anhui, Hunan, Jiangxi, Guizhou, 

Sichuan, and Yunnan have location entropies that are clearly greater than 1, with 

Guangxi, Fujian, and Jiangxi having location entropies that are more than 2. This 

suggests that these three provinces hold a dominant position in the country’s animal 

husbandry industry. Jiangsu has the lowest concentration of animal husbandry; both 

Jiangsu and Hubei have location entropies below 1, while Jiangsu’s location entropy 

is even below 0.7. The Southern Public Forestry Region’s 11 provinces (autonomous 

areas) have an overall tendency of rising volatility in the animal husbandry sector, 

but Yunnan Province exhibits a trend of falling volatility. The animal husbandry 

industry’s concentration in Guangxi, Fujian, Anhui, Jiangxi, and Guizhou from 1990 

to 2020 indicates a significant potential for growth. Overall, the level of animal 

husbandry concentration in the southern common forest regions varies clearly by 

time and location. 

2.1. Building a regression model 

In addition to examining the influence of other variables, this research 

investigates the nonlinear link between cattle concentration and economic growth 

[17]. Panel data were used for analysis and modeling based on the Cobb-Douglas 
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production function, which is the basis for the secondary concentration factor 

introduced in the paper. 

𝑇𝑖𝑡 = 𝜎0 + 𝜎1𝐿𝑄𝑖𝑡 + 𝜎2𝐿𝑊𝑖𝑡
2 + 𝜎3 + 𝜙𝑖𝑡 + 𝛾𝑖𝑡 (6) 

2.2. Analysis of regression and endogenous therapy 

Excessive linear correlation may cause the regression findings to be distorted 

and the regression coefficients’ economic significance to diverge from the theory. 

The correlation coefficient matrix method or the visual observation method can be 

used to address this. Table 2 tests the degree of agglomeration because the model 

include the square term of livestock agglomeration. 

Table 2. Test for multicollinearity. 

Variables VIF 1/VIF 

LQ 1.25 0.568 

LQ2 1.52 0.656 

C 2.25 0.436 

S 1.03 0.958 

1nL 2.66 0.378 

1nF 1.74 0.565 

1nK 1.82 0.564 

Mean VIF 1.25 - 

According to Table 2, using raw data directly in panel data regression analysis 

may result in a high correlation between the independent and dependent variables. 

However, this could be due to the phenomenon known as “pseudo-regression,” 

which produces unreliable results [18]. To get more representative and reliable 

results, this study employed three different kinds of root tests: the LLLC test, the IPS 

test, and the ADF-Fisher test. 

According to the test findings, the extreme value of 11,835, which has a 

negative test slope and a significance level of 5%, lies between the interval’s upper 

and lower bounds. The model must be addressed because it is prone to endogenous 

issues. Endogenous treatment methods like dynamic panel regression, the 

instrumental variable method, and the twofold difference method can be applied for 

this [19]. This research uses the generalized moment estimation (GMM) technique to 

solve the endogeneity problem using a dynamic panel regression model since 

economic development has inertia and the present is frequently influenced by the 

past. The results are displayed in Table 3. 

The AR (2) model did not exhibit dependency, as indicated in Table 3, where 

the test’s p-value exceeded 0.05. This finding confirms that the null hypothesis of no 

second-order serial correlation cannot be rejected. Additionally, the Hansen test 

result was greater than 0.133, suggesting that the over-identification problem was not 

caused by the instrumental variables utilized in the model. These outcomes validate 

the robustness of the chosen instruments and the overall reliability of the model 

specification. 
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Table 3. Estimation of generalized moment. 

A variable GMM 

L.1nY 0.1354 

LQ 0.4568 

LQ2 −0.2684 

C 5.8264 

S −0.0784 

1nL −0.0568 

1nF 0.0198 

1nK 0.1452 

AR (2) Examining 0.368 

Inspection by Hansen 0.125 

Table 3 further highlights that while most variables were significant at the 5% 

level, the primary explanatory variables LQ and LQ2 were highly significant at the 1% 

and 5% levels, respectively. This underscores the importance of these factors in 

explaining the variability of the dependent variable and reinforces their theoretical 

relevance in the context of the study. 

Given the high T (time periods) and small N (cross-sectional units) structure of 

the dataset, the generalized method of moments (GMM) estimation may introduce 

bias due to the small sample size. To address this limitation, the study adopts the 

dynamic panel corrected least squares dummy variable method (LSDVC), which is 

particularly effective in mitigating these biases [20]. 

Root tests (such as the Augmented Dickey-Fuller test) are used to check for 

stationarity in panel data. The general formula for testing a unit root is: 

𝛥𝑌𝑖𝑡 = 𝜌𝑌𝑖𝑡−1 + 𝜖𝑖𝑡 (7) 

where: 

⚫ 𝑌𝑖𝑡 is the variable of interest; 

⚫ 𝛥𝑌𝑖𝑡 denotes the first difference operator; 

⚫ 𝜌 is the parameter to be tested for unit roots; 

⚫ 𝜖𝑖𝑡 is the error term. 

Description: 

This formula represents the testing of whether a variable has a unit root, 

indicating it is non-stationary (i.e., its mean and variance change over time). In the 

context of panel data regression, checking for stationarity is essential before applying 

models like dynamic panel regression, as non-stationary data could lead to 

misleading results. 

The GMM estimator used in panel data regression with endogeneity problems is 

given by: 

𝜃𝐺𝑀𝑀 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑊 [𝑔(𝜃 × 𝑊𝑔(𝜃)] (8) 

where: 

⚫ 𝜃 is the vector of estimated coefficients, 
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⚫ 𝑔 is the vector of moment conditions (e.g., expectations of instruments being 

uncorrelated with the errors), 

⚫ W is the weight matrix (usually the inverse of the covariance matrix of moment 

conditions). 

The GMM method is used to handle endogenous issues in panel data, where the 

explanatory variables are correlated with the error term. This approach uses 

instrumental variables to correct for endogeneity, leading to more reliable estimates. 

It is particularly useful when past economic states influence current outcomes, as in 

the case of economic inertia in livestock production. 

The LSDVC approach leverages a three-step process to enhance estimation 

accuracy. First, biased estimates are derived using a fixed-effects model. Next, 

GMM is employed to obtain consistent estimates. Finally, bias is estimated, and 

parameter standard errors are calculated using a combination of the bootstrap 

approach and bias correction techniques. Monte Carlo simulation data demonstrate 

that LSDVC outperforms GMM in scenarios with a high T and small N structure, 

offering more reliable and precise parameter estimates. 

Moreover, the application of LSDVC aligns well with the study’s objective of 

achieving robust and unbiased results, ensuring that the conclusions drawn from the 

analysis are both statistically and practically valid. These methodological 

considerations significantly contribute to the credibility of the findings, highlighting 

the nuanced relationships between the explanatory variables and their impact on the 

dependent variable. 

In summary, the combined use of AR (2), Hansen tests, and LSDVC 

underscores the rigor of this study’s analytical framework, paving the way for 

accurate inferences and actionable insights into the research domain. 

3. Analysis of a case 

Ecological animal husbandry is founded on the ideas of animal ecology and 

ecological economics in order to fully advance the development of animal husbandry, 

increase productivity, and foster industrial cooperation. These ideas are applied in 

conjunction with systems engineering, contemporary technology, and ecological 

regulations. 

3.1. Test of correlation 

This study examines the spatial relationship between livestock development and 

sustainable economic growth using two variables and a geospatial weighting matrix. 

To ascertain the geographical correlation, the majority of the studies employed 

Moran’s I and Geary’s C. With the exception of the livestock development index 

(AGG) in 2018 and the sustainable economic development index (1NPGP) in 2016, 

the research’ findings (refer to Table 4 and Figure 2) demonstrated that the index of 

sustainable economic development (1NPGP) was still in use in 2020. In order to 

compare pertinent data and variables, a spatial econometric model must be built. 
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Table 4. From 2015 to 2021, the Moran and Gilley indices of economic sustainability and the advancement of animal 

husbandry. 

Specific year 
1nPGDP Agg 

Moran index Gilley index Moran index Gilley index 

2015 0.077(15.215) 0.914(−9.615) 0.023(5.466) 0.942(−4.176) 

2016 0.061(12.967) 0.917(−8.907) 0.022(5.465) 0.941(−4.664) 

2017 0.066(13.888) 0.919(−9.883) 0.034(6.923) 0.935(−5.342) 

2018 0.063(12.575) 0.926(−6.493) 0.011(3.714) 0.973(−0.605) 

2019 0.042(9.375) 0.947(−2.388) 0.046(9.275) 0.913(−5.856) 

2020 0.083(16.286) 0.903(−11.866) 0.056(11.156) 0.914(−7.622) 

2021 0.103(20.433) 0.879(−15.321) 0.084(16.675) 0.877(−10.143) 

 

Figure 2. Correlation between the Gilley index and the Moran index. 

3.2. Test of robustness 

When considering the development of a spatial weight matrix to ensure the 

stability of regression results, there is no appreciable change. We looked at the 

relationship between ecological sustainability and the rate of livestock growth, and 

Figure 3 illustrates how ecological sustainability significantly affects the growth of 

different livestock species. 

This research proposes several coping mechanisms to promote ecological 

animal husbandry effectively. A primary recommendation is to prioritize shifting 

traditional perceptions of animal husbandry toward embracing the principles of 

ecological animal husbandry. To achieve this, it is crucial for the government to 

launch widespread awareness campaigns at the grassroots level. Utilizing accessible 

media such as radio, television, and digital platforms, these campaigns should clearly 

explain the importance, benefits, and necessity of adopting eco-animal husbandry 

practices. This approach aims to foster a positive perception and understanding 
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among communities, emphasizing the alignment of ecological practices with long-

term economic and environmental sustainability. 

 

Figure 3. Growth rate change in animal husbandry as a result of ecological 

sustainability. 

Special attention must be directed toward addressing the educational barriers 

faced by ranchers, who often have lower literacy levels, making it challenging for 

them to grasp complex concepts. Tailored educational programs, practical 

demonstrations, and interactive workshops should be implemented to convey these 

ideas effectively. Local agricultural extension services could also play a key role in 

providing hands-on training and ongoing support. 

Figure 4 illustrates the progressive transformation in public attitudes toward 

ecological animal husbandry over time, highlighting the increasing acceptance and 

adoption of these sustainable practices. These shifts in perception reflect the growing 

recognition of ecological animal husbandry as a viable approach to achieving 

enhanced productivity while preserving environmental resources. 

 

Figure 4. Encouragement of environmentally friendly animal husbandry. 
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Additionally, policy interventions such as financial incentives, subsidies for 

eco-friendly farming technologies, and recognition programs for exemplary 

practitioners can further encourage the adoption of sustainable practices. By 

integrating these mechanisms, a comprehensive framework can be established to 

transition from traditional to ecological animal husbandry, ensuring a harmonious 

balance between economic growth, animal welfare, and environmental stewardship. 

As shown in Figure 5. In this study, we analyzed the behaviours of meerkats 

using a dataset that contained 105,604 video-labelled 2-second bouts, focusing on 

four key behaviours: vigilance, resting, foraging, and running. These behaviours 

were observed in different environmental contexts, and the signals generated by the 

meerkats during these activities were recorded for further analysis. 

 

Figure 5. Animal performance data. 

Vigilance is a behaviour during which the meerkat remains still, maintaining a 

focused attention on its surroundings. The signal during vigilance shows occasional 

short perturbations, corresponding to slight head movements as the animal scans its 

environment. This indicates that although the meerkat is not moving significantly, it 

is still actively monitoring its surroundings. The stability of the signal is a key 

feature of this behaviour, with small interruptions caused by the animal’s head turns 

for visual scanning. The signal pattern during vigilance is more stable compared to 

other behaviours like foraging or running, as it is primarily driven by the meerkat’s 

alert posture rather than active locomotion or digging. 

Resting is another behaviour where the meerkat remains motionless. However, 

the signal during resting has a different intercept compared to the vigilance state, 

reflecting a different physiological state of the animal. Unlike vigilance, where the 

meerkat’s alertness is maintained, resting signals suggest that the meerkat is in a 



Molecular & Cellular Biomechanics 2025, 22(3), 1260.  

12 

relaxed state, without the need to constantly monitor its surroundings. The signal 

during resting is typically more stable and continuous, lacking the short, sharp 

perturbations seen in vigilance. This provides a clear distinction between the two 

states, where vigilance is marked by occasional activity, while resting is 

characterized by stillness and reduced physiological activity. 

Foraging involves more dynamic movements, such as digging and manoeuvring, 

which cause erratic variations in the signal. The site-dependent nature of foraging 

means that the meerkat’s actions can vary greatly depending on the environment, 

leading to more variable signals. This can include rapid, short bursts of activity when 

the meerkat digs, as well as slower, more deliberate movements as it searches for 

food. These fluctuations in the signal are reflective of the meerkat’s interaction with 

its environment as it locates and retrieves food, making foraging one of the most 

variable behaviours in terms of signal patterns. 

Running is a high-intensity, rhythmic behaviour that produces a highly periodic 

signal. The running signal is marked by regular intervals, which correspond to the 

meerkat’s rhythmic movements as it accelerates and decelerates. This behaviour is 

the least common in the dataset, accounting for only 1% of the bouts. However, its 

periodic nature allows for easy identification and classification, standing in contrast 

to the more erratic signals produced during foraging. 

As shown in Figure 6, the dataset used in this study was meticulously 

processed to exclude bouts where transitions between behaviours occurred, where 

the animal was not visible in the camera frame, or where social interactions such as 

grooming were observed. These exclusions left a total of 82,550 bouts, with the 

majority of them classified as either foraging (56.2%) or vigilance (38.2%). Running, 

being the rarest behaviour, only accounted for 1% of the retained bouts, making it 

more challenging to classify but still detectable due to its highly rhythmic signal 

pattern. 

 

Figure 6. Comparison of animals in various states. 
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In terms of data analysis, the performance of different machine learning models 

was evaluated using the M1-M2-M3 hybrid model. Out of the 64 possible 

combinations, the SVM-SVM-SVM hybrid model emerged as the best performer 

across all three cross-validation methods. The linear-kernel support vector machine 

(SVM) was particularly effective because it automated the search for robust feature-

value thresholds, which enabled the model to classify the behaviours with high 

accuracy. The decision boundaries derived from the linear-kernel SVM were simple 

and intuitive, making the classification scheme transparent and physically 

interpretable. The classification rules, based on these linear decision boundaries, 

allowed for a clear understanding of how each behaviour was distinguished from the 

others. 

To benchmark the SVM-SVM-SVM model’s performance, results were 

compared against classical machine learning methods using the same number of 

features. While classical methods yielded satisfactory results, the SVM-SVM-SVM 

hybrid model performed better in terms of both accuracy and interpretability. The 

transparency of the classification rules makes the model particularly valuable in 

ecological studies, where understanding the behavioural patterns of animals is 

crucial for understanding their interactions with the environment. 

In summary, this study demonstrates the effectiveness of using machine 

learning, particularly the SVM-SVM-SVM hybrid model, to classify and understand 

the behaviour of meerkats in their natural environment. The different signal patterns 

associated with vigilance, resting, foraging, and running were successfully identified 

and classified, with clear distinctions drawn between each behaviour. This approach 

opens up new avenues for studying animal behaviour in a more automated and 

objective manner, with implications for broader ecological research. 

4. Discussion 

In this study, we investigated the behaviour of meerkats by analyzing a large 

dataset of 2-second bouts of video-labelled behavioural data, focusing on four key 

behaviours: vigilance, resting, foraging, and running. The primary aim of the 

research was to explore the potential of machine learning, particularly support vector 

machines (SVMs), for classifying these behaviours based on the signals generated 

during each activity. The results indicate that machine learning models, particularly 

the SVM-SVM-SVM hybrid model, can successfully differentiate between these 

behaviours, with strong potential for automating the analysis of animal behaviour in 

natural settings. 

Our findings highlight distinct signal characteristics for each behaviour. 

Vigilance and resting, while both involving periods of stillness, are clearly 

distinguishable based on their signal patterns. Vigilance is characterized by brief 

perturbations as the meerkat scans its surroundings, reflecting the animal’s active 

state of alertness. On the other hand, resting signals are generally more stable, 

corresponding to a relaxed state with minimal movement. This distinction between 

vigilance and resting underscores the importance of physiological and behavioural 

context in interpreting animal signals. The clear separation of these two states, 
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despite their apparent similarity in terms of physical stillness, emphasizes the need 

for accurate, context-specific analysis in animal behaviour studies. 

Foraging, as expected, produced the most erratic signal patterns, reflecting the 

dynamic and site-dependent nature of the behaviour. The variation in foraging 

signals is likely due to the meerkat’s interactions with the environment, such as 

digging, searching for food, and maneuvering around obstacles. This variability in 

the signal makes foraging one of the most challenging behaviours to classify but also 

one of the most informative in understanding the meerkat’s interaction with its 

habitat. The model successfully captured these variations, highlighting the power of 

machine learning to process complex, real-world data with a high degree of accuracy. 

Running, though the least common behaviour in the dataset, exhibited a highly 

rhythmic and periodic signal, making it easily distinguishable from the other 

behaviours. The simplicity of this signal pattern makes running an ideal candidate 

for machine learning classification, but its relative rarity in the dataset posed 

challenges in terms of balancing the data and ensuring robust performance. Despite 

accounting for only 1% of the total bouts, the periodic nature of the running signal 

was effectively identified by the SVM-SVM-SVM model, demonstrating the 

model’s capability in handling both common and rare behaviours. 

One of the key strengths of this study lies in the application of the SVM-SVM-

SVM hybrid model, which outperformed classical machine learning methods. The 

use of linear-kernel SVMs to define simple decision boundaries not only improved 

classification accuracy but also enhanced interpretability. The transparency of the 

model’s decision-making process allows researchers to gain a deeper understanding 

of the behavioural patterns of meerkats, providing insights into the underlying 

mechanisms that drive these behaviours. The ability to automate the identification of 

behaviours based on their signal patterns opens up new possibilities for large-scale, 

real-time monitoring of animal populations, which could have significant 

applications in ecological research, wildlife conservation, and behavioural ecology. 

Moreover, the study underscores the importance of data quality and 

preprocessing in behavioural analysis. Excluding bouts with transitions between 

behaviours, missing animal data, or social behaviours such as grooming was crucial 

to ensuring that the dataset remained focused on the four key behaviours of interest. 

By carefully selecting the data for analysis, we were able to improve the accuracy 

and robustness of the machine learning models, allowing for clearer distinctions 

between behaviours. 

While the results are promising, there are several limitations and avenues for 

future research. The dataset, while large, still only accounted for a limited range of 

environmental conditions, which could influence the behavioural signals. Future 

studies should explore how these behaviours manifest under different ecological 

pressures, such as predation risk, food scarcity, or social dynamics. Additionally, 

expanding the range of behaviours analysed, including social interactions and other 

context-dependent behaviours, could further enrich our understanding of meerkat 

behaviour and the potential applications of machine learning in animal behaviour 

research. 

In conclusion, this study demonstrates the efficacy of machine learning, 

specifically SVM-based models, in the classification of meerkat behaviours. The 
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distinct signal characteristics for vigilance, resting, foraging, and running provide 

valuable insights into the behavioural ecology of meerkats, while the transparency 

and interpretability of the SVM-SVM-SVM hybrid model offer a new approach for 

behavioural analysis in natural settings. As technology advances and more complex 

datasets become available, the integration of machine learning techniques will likely 

become an indispensable tool in the field of animal behaviour research, enabling 

more efficient, scalable, and accurate analyses of animal activity. 

5. Conclusion 

Biomechanics plays a pivotal role in advancing animal husbandry by optimizing 

health, welfare, and productivity in livestock management. By applying principles of 

motion and mechanics, it enables the design of animal-friendly environments that 

minimize stress and injuries, thereby enhancing overall well-being and performance. 

Biomechanics also improves the efficiency of equipment and processes, such as 

feeding systems, housing structures, and transportation methods, ensuring that they 

are ergonomically suited to the animals’ physical needs. 

Beyond animal care, biomechanics contributes significantly to sustainable 

farming by developing eco-friendly systems that lower resource consumption, reduce 

waste, and mitigate environmental impacts. For instance, biomechanical insights can 

guide the creation of energy-efficient housing designs or waste management systems 

that align with environmental conservation goals. Moreover, understanding animal 

movement and behavior helps optimize space utilization, improving farm 

productivity while maintaining ethical standards. 

As the global demand for food continues to grow, biomechanics will become 

increasingly essential in shaping the future of agriculture. It offers a pathway to 

achieving a harmonious balance between high productivity, enhanced animal welfare, 

and environmental sustainability, fostering resilient and ethical agricultural systems 

capable of meeting the challenges of the 21st century. 
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