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Abstract: With the development of high-precision sensors and data acquisition equipment, 

biomechanical data presents high-dimensional, strong time-series dependence and nonlinear 

characteristics, and it is difficult for traditional physical modeling and statistical methods to 

process such data efficiently and accurately. The purpose of this paper is to build a 

biomechanical data-driven prediction framework based on Transformer model, and realize 

high-precision prediction by deeply mining the time series characteristics of data, which 

provides theoretical support and practical application value for medical diagnosis, 

rehabilitation monitoring and sports science. In terms of methods, this paper preprocesses 

biomechanical data such as joint angle, electromyography (EMG) and joint stress, and 

designs a time series prediction framework based on the self-attention mechanism of 

Transformer model. Through the simulation experiment, five indexes, namely mean square 

error (MSE), mean absolute error (MAE), determination coefficient (R2), prediction time and 

Pearson correlation coefficient, are selected to evaluate and compare the performance of the 

model. The experimental results show that the Transformer model is superior to the 

traditional LSTM, GRU and ARIMA models in all kinds of biomechanical data prediction 

tasks: MSE is 0.0152, R2 is as high as 0.982, and the prediction time is only 0.76 s. In 

addition, Pearson correlation coefficient is close to 1 in different data types, which verifies 

the high consistency between the predicted results of the model and the real values. The 

conclusion of this paper shows that the Transformer model can effectively capture the global 

spatio-temporal characteristics of biomechanical data, and has high precision, high efficiency 

and strong generalization ability, which provides new technical means and theoretical support 

for biomechanical data-driven analysis and application. 

Keywords: biomechanical data; transformer model; data driven; high precision prediction 

1. Introduction 

Biomechanics, as an important subject to study human motion and mechanical 

behavior, is widely used in medicine, sports science, rehabilitation engineering and 

other fields. With the development of sensor technology and data acquisition 

equipment (such as high-precision mechanical sensor, motion capture system, 

electromyography measurement equipment, etc.), the accuracy and scale of 

biomechanical data acquisition have been significantly improved. However, this kind 

of data usually has the characteristics of high dimension, strong time series 

dependence and nonlinearity. Traditional physical models and statistical methods 

have many challenges in dealing with this kind of data, such as high modeling 

complexity, insufficient generalization ability and low computational efficiency [1]. 
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In recent years, with the help of machine learning and deep learning technology, 

data-driven methods have shown remarkable advantages in complex data modeling 

and prediction [2]. Especially in the task of time series data prediction, methods such 

as recurrent neural network (RNN) and long-term and short-term memory network 

(LSTM) have achieved good results [3]. However, due to its recursive structure, this 

kind of model has the problems of difficult parallel calculation and limited long-term 

dependence modeling ability, which is difficult to meet the accurate prediction 

requirements of high-complexity biomechanical data. 

Aiming at the above problems, the Transformer model provides a new solution 

for the time series prediction of biomechanical data. Transformer model overcomes 

the limitations of traditional time series model by using Self-Attention mechanism, 

and can capture long-term dependencies and realize efficient parallel computing. In 

this paper, biomechanical data is taken as the research object, and a prediction 

framework based on Transformer model is constructed, aiming at mining the deep 

time series characteristics of data, realizing high-precision biomechanical data-

driven prediction and analysis, and providing theoretical support and practical 

application value for medical diagnosis, rehabilitation monitoring and sports science. 

2. Theoretical background 

2.1. Biomechanical data-driven prediction 

Biomechanics is a subject that studies the mechanical characteristics and motion 

laws of biological systems (such as human body and animals), covering the 

interactive mechanical relations among complex systems such as bones, muscles and 

joints. Traditional biomechanical analysis usually relies on physical modeling, such 

as finite element analysis (FEA) or solving dynamic equations [4]. These methods 

are excellent in analyzing linear and simple structures, but in complex biological 

systems, it is difficult for traditional modeling methods to accurately describe the 

system behavior due to organizational heterogeneity, nonlinear material properties 

and multi-scale coupling characteristics [5,6]. 

Data-driven method learns hidden features and mapping relationships in 

biomechanical data through machine learning algorithm, skips physical modeling 

and directly models and predicts the system. This method is suitable for processing 

large-scale biomechanical data with strong individual differences. For example, 

based on the prediction of human gait data, the stress and motion trajectory of 

skeletal joints can be accurately estimated, which provides theoretical support for 

rehabilitation training and sports injury protection. In recent years, biomechanical 

analysis tools widely used in sports science and clinical settings, such as motion 

capture systems and wearable devices, have produced a large number of time series 

data, providing rich materials for data-driven prediction. 

In the training of athletes, the prediction model based on biomechanical data 

can help coaches and athletes to evaluate the joint stress and muscle fatigue in real 

time, so as to optimize the exercise plan and reduce the risk of sports injury. In 

addition, in rehabilitation medicine, by analyzing the gait and muscle activity 

patterns of patients, the data-driven prediction model can provide strong support for 
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the formulation of personalized treatment programs and improve the rehabilitation 

effect. 

Biomechanical data, such as EMG, joint angle and mechanical response, 

usually show the characteristics of time continuity and dynamic change. Therefore, 

the time series prediction model has become the core tool to solve biomechanical 

problems. Traditional time series models, such as autoregressive moving average 

model (ARIMA) and long-term memory network (LSTM), can capture the time 

correlation of data, but when dealing with long-term dependence and high-

dimensional complex data, there are some problems such as low computational 

efficiency and insufficient generalization ability of models. The introduction of 

Transformer model provides a new way to solve this problem. 

2.2. Introduction of transformer model 

Transformer model was proposed by Vaswani et al. in 2017, and was originally 

applied to natural language processing (NLP) tasks. Different from the traditional 

recurrent neural network (RNN) and convolutional neural network (CNN), 

Transformer is completely based on the self-attention mechanism, which realizes the 

efficient modeling of the dependencies between elements in sequence data. 

The core structure of Transformer model includes self-attention mechanism, 

feedforward neural network, residual connection and layer normalization. 

Specifically, the self-attention mechanism determines the importance of each 

element in the prediction process by calculating the attention weight between each 

element and other elements in the input sequence. This modeling method of global 

dependency makes up for the deficiency of traditional RNN that it is difficult to 

capture long-distance dependency when the time step increases [7]. 

Transformer’s Multi-Head Attention mechanism further improves the modeling 

ability of the model for different subspace features. By calculating multiple attention 

heads in parallel, the model can pay attention to different dimensions and different 

position characteristics of input data, so that it can handle complex high-dimensional 

biomechanical data. Transformer introduces position information through Positional 

Encoding, so that the model can perceive the time sequence of input data, which is 

an indispensable function in time series prediction [8]. 

Compared with traditional time series networks such as LSTM, the advantages 

of Transformer are mainly reflected in the following points: high computational 

efficiency, because of removing the circular structure, Transformer can realize 

parallel computing and greatly improve the training and reasoning speed. Long-term 

dependency modeling ability is strong. Through self-attention mechanism, 

Transformer can capture the long-distance dependency between data globally. The 

model has good expansibility, and Transformer has flexible structural design, which 

can adjust the model parameters, such as the number of layers and heads, according 

to the task requirements [9,10]. 

In the field of biomechanical data prediction, the introduction of Transformer 

model provides a new idea for complex time series data modeling. Through the self-

attention mechanism, the model can effectively capture the potential spatio-temporal 

characteristics in biomechanical data, and accurately predict the motion state, joint 
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stress and muscle activation signals. For example, in the field of robot control and 

motion analysis, Transformer is used to analyze the stress of robot joints, optimize 

the motion control strategy of robots, and even realize autonomous motion in 

complex environments. In addition, the potential applications of Transformer in 

clinical rehabilitation and sports medicine, such as gait analysis and muscle 

activation pattern recognition, are constantly being expanded and verified. With the 

development of technology, the application field of Transformer model is expanding 

to more biomechanical research fields, which provides more accurate prediction and 

decision support. 

3. Transformer model 

3.1. Data preprocessing 

Data preprocessing is a key step to ensure the performance of biomechanical 

data-driven prediction model [11,12]. Biomechanical data are widely available, 

including human motion capture data, electromyography (EMG), joint force and 

mechanical response data. These data usually come from laboratory equipment (such 

as motion capture systems, surface electromyography collectors, pressure sensors, 

etc.) and wearable devices or real-time sensors (such as smart sports watches and 

inertial measurement units (IMU), etc.). These data usually have the characteristics 

of high dimension, nonlinearity, time series and noise interference, and there are 

some differences between different sensors and data sources. In order to make the 

Transformer model deal with these complex data effectively and ensure the data 

quality and consistency, the following preprocessing work is usually needed: 

1) Data Normalization:  

Because the dimension and range of biomechanical data are quite different, the 

numerical range of each feature may be different by several orders of magnitude [13]. 

The joint angle data may fluctuate in the range of −180 to 180 degrees, while the 

amplitude of EMG signal is usually small, which may be concentrated between 0 and 

1, and the joint force may be between tens and hundreds of Newtons. If the non-

normalized data is directly input, the weight adjustment may be biased towards the 

characteristics with large values in the process of model training, which will affect 

the convergence efficiency and prediction accuracy of the model. Therefore, the 

normalization method is used to map the data to the same range, such as [0, 1] or a 

range with a mean value of 0 and a standard deviation of 1. In order to further ensure 

the data quality, the following normalization formula is usually used: 

𝑥 ′ =
𝑥 − 𝜇

𝜎
 (1) 

where 𝑥 represents the raw data, 𝜇 is the mean of the data, 𝜎 is the standard deviation, 

and 𝑥 ′ is the normalized data. Different data sources (such as EMG signals and 

motion capture data) need to be normalized separately to ensure the consistency of 

model input data. 

2) Time Series Segmentation:  

Biomechanical data are usually recorded in the form of time series, reflecting 

the dynamic characteristics of human motion state or mechanical signals [14,15]. In 
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practical application, in order to adapt to the Transformer model, it is necessary to 

segment these continuous time series data. Usually, a fixed-length time window is 

used as the input of the model, and multiple groups of inputs and corresponding 

prediction targets are generated by sliding the window. Let the time window be 𝑇, 

the step size be 𝑠, then the input for the 𝑘 time window is: 

𝑋𝑘 = {𝑥𝑘, 𝑥𝑘+1, ⋯ , 𝑥𝑘+𝑇−1}, 𝑦𝑘 = 𝑥𝑘+𝑇 (2) 

where 𝑋𝑘 represents the input sequence, and 𝑦𝑘  is the target prediction value. 

3) Outlier Processing: 

In the process of data acquisition, biomechanical data may be affected by 

factors such as sensor accuracy, environmental interference or operational errors, 

resulting in abnormal values (such as prominent noise, jumping signals or 

unreasonable measured values). These abnormal values may interfere with the 

learning of the normal model, and even lead to the distortion of the training results. 

Therefore, it is necessary to detect and process the abnormal values in the data. 

Commonly used methods for handling outliers include: 

Median filtering: replacing outliers with the median in the data window can 

smooth the signal and reduce the influence of outliers. 

Rule of Three Sigma: Assuming that the data obeys normal distribution, the 

data points beyond the three standard deviation ranges [𝜇 − 3𝜎, 𝜇 + 3𝜎] of the mean 

𝜇 are regarded as abnormal values, and they are deleted or corrected. 

4) Missing value processing:  

In the collection of biomechanical data, data is often missing due to equipment 

failure, signal loss or measurement interruption. If these missing values are ignored 

directly, the input data of the model may be incomplete, which will affect the 

prediction ability of the model. Therefore, the filling of missing values has become 

an important part of data preprocessing. Common treatment methods include: 

Linear interpolation: By linear interpolation method, the missing values are 

filled with the linear estimated values of adjacent data points, so as to maintain the 

continuity of data. 

Mean filling: the missing value is replaced by the mean value of this feature, 

which is suitable for scenes with no obvious time correlation. 

According to the time series characteristics of biomechanical data, linear 

interpolation is usually considered as an effective filling method, because it can 

better maintain the time continuity and dynamic characteristics of the data. 

5) Data set partition:  

In order to reasonably evaluate the generalization performance and prediction 

ability of the model, it is necessary to partition the data set. Generally speaking, 

according to the proportion of 70%, 15% and 15%, the data is divided into training 

set, verification set and test set: 

Training set: used for model training and parameter optimization, accounting 

for most of the data set. 

Verification set: used to adjust the superparameter of the model and monitor 

over-fitting during training. 

Test set: used to finally evaluate the performance of the model and test its 

prediction ability for unknown data. 
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When dividing data, attention should be paid to maintaining the consistency of 

feature distribution of all kinds of data, so as to avoid the distortion of evaluation 

results caused by distribution differences. All kinds of motion or signal patterns in 

the data set (such as joint angles at different motion stages and EMG signals of 

different muscle activities) should be distributed consistently in the training set, 

verification set and test set [16–18]. 

In order to ensure the quality and consistency of data, researchers usually use 

different data sources, such as published biomechanics data sets (such as 

Biomechanics Lab data sets or human motion analysis data sets), and combine the 

data collected in the laboratory. Data quality monitoring and preprocessing steps of 

multi-source data fusion are helpful to improve the robustness and generalization 

ability of the model. 

3.2. Transformer structural design 

Based on the characteristics of biomechanical data, such as time series, 

complexity and high dimension, a Transformer model suitable for time series 

prediction task is designed in this study. The whole structure of the model consists of 

input layer, Encoder and output layer, and the core mechanisms are self-attention 

mechanism and position coding. Through this structural design, the model can 

effectively capture the temporal and spatial dependence characteristics in time series 

data, and significantly improve the prediction accuracy and generalization ability 

[19,20]. The following will elaborate on the design of each part. 

3.2.1. Input layer design 

The main function of the input layer is to transform the original biomechanical 

time series data into a feature representation that the model can handle, and at the 

same time explicitly introduce time series information. Biomechanical data include 

multi-dimensional information such as joint angle, EMG signal and mechanical 

response. The input layer maps these high-dimensional time series data into a unified 

feature space through linear transformation, which provides a basis for subsequent 

processing. 

Because the Transformer model itself does not have the natural ability to deal 

with sequence order, the input layer explicitly introduces time information through 

Positional Encoding. This position coding replaces the implicit time step processing 

method in traditional recurrent neural network (RNN) in Transformer, which enables 

the model to understand the time sequence of input data. 

3.2.2. Design of encoder 

Encoder is the core part of Transformer model, and its main task is to extract 

the depth features of input data and model the temporal dependency. The overall 

structure of the encoder is composed of multiple Encoder Layers stacked, and each 

encoder layer contains the following key components: 

Self-attention mechanism is the core module of Transformer model, which is 

used to calculate the dependence between different time steps in input data. Different 

from the traditional recurrent neural network (RNN), the self-attention mechanism 

can pay attention to the features in the data globally by calculating the similarity 

between time steps, which makes the model perform particularly well in dealing with 
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long-term dependence problems. The function of self-attention mechanism is to 

allow the model to pay attention to the important features in time series at the same 

time, rather than just relying on the adjacent time step information. In the 

biomechanical data of joint stress, the model can simultaneously capture the stress 

change relationship between different time points through the self-attention 

mechanism, which is of great significance in long-term time series prediction. 

On the basis of self-attention mechanism, Transformer introduces multi-head 

attention mechanism, that is, the same input data is calculated in parallel for many 

times, and different subspace features of the concerned data are calculated each time. 

Multi-attention mechanism can capture data features from different angles, which 

significantly enhances the expressive ability and robustness of the model. 

This mechanism is especially suitable for multi-dimensional feature modeling 

in biomechanical data. For example, in the prediction of EMG, different attention 

heads may pay attention to the amplitude change, frequency characteristics or other 

hidden patterns of the signal. 

3.2.3. Design of output layer 

The function of the output layer is to transform the depth features extracted by 

the encoder into the final prediction results. 

The high-dimensional feature representation of the encoder output is mapped to 

the target prediction space through linear transformation of the output layer. This 

step ensures that the model can output the predicted results that meet the task 

requirements, such as biomechanical indexes such as joint force and muscle stress. 

The output layer integrates and outputs the prediction results according to the 

task requirements. For example, for a single-step time series prediction task, the 

model outputs the predicted value of a single future time step. For multi-step time 

series prediction task, the model outputs a series of continuous time step prediction 

values. 

3.3. Loss function and optimization 

In order to verify the validity of the biomechanical data-driven prediction 

framework based on Transformer model, this part comprehensively evaluates the 

modeling ability and prediction performance of the model through simulation 

experiments. The experimental design starts with data set description, model 

parameter configuration and evaluation index selection, aiming at providing a solid 

experimental basis and data support for the scientific and applicable model. 

3.3.1. Loss function 

Mean square error (MSE) formula is as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − �̑�𝑖)

𝑁

𝑖=1

2

 (3) 

where 𝑦𝑖 is the true value, �̑�𝑖 is the predicted value of the model, and N is the number 

of samples. 

3.3.2. Optimization algorithm 

Using Adam optimizer to update parameters, the update rules are as follows: 
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𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡, 𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (4) 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
𝑚𝑡/(1 − 𝛽1

𝑡)

√𝑣𝑡/(1 − 𝛽2
𝑡+∈

 (5) 

where 𝑔𝑡 is gradient, 𝑚𝑡 and 𝑣𝑡  are first-order and second-order moment estimates 

respectively, and 𝛽1, 𝛽2 is hyperparameter. 

3.3.3. Hyperparameter sensitivity analysis 

During model training, several key hyperparameters in the Adam optimizer 

have a significant impact on performance, primarily including the learning rate (η), 

the decay rates for the first moment estimate (β1) and the second moment estimate 

(β2). The choice of these hyperparameters has a notable influence on model 

convergence speed, training stability, and final prediction accuracy. 

Learning Rate (η): The learning rate determines the step size for updating model 

parameters at each iteration. If the learning rate is too large, the model may become 

unstable and fail to converge; if the learning rate is too small, the convergence will 

be slow, leading to longer training times. 

Decay Rates (β1, β2): β1 controls the decay rate of the first moment estimate, 

while β2 controls the decay rate of the second moment estimate. A smaller β1 may 

cause unstable gradient updates, while a larger β2 may lead to premature 

convergence of the learning rate, negatively affecting model performance. 

In this study, we perform grid search and cross-validation to adjust the values of 

the learning rate, β1, and β2 to find the optimal hyperparameter combination for this 

task. Experimental results indicate that smaller learning rates and moderate values 

for β1 and β2 effectively improve the model’s prediction accuracy and stability. 

Through the sensitivity analysis of these hyperparameters, we are able to better 

understand their impact on model performance and, based on experimental results, 

define the optimal hyperparameter configuration. This optimizes the model training 

process and enhances prediction accuracy. This analysis provides the foundation for 

establishing best practices for model configuration and offers valuable experience for 

model optimization in similar tasks. 

4. Simulation experiment and analysis 

To verify the effectiveness of the Transformer-based biomechanics data-driven 

prediction framework, this section conducts simulation experiments for modeling 

and evaluation. The experimental setup includes the dataset description, model 

parameter configuration, and performance evaluation metrics. 

4.1. Dataset description 

The data sets used in the experiment come from a wide range of sources, 

including public data sets commonly used in biomechanical research and actual 

collected data. These data cover the key mechanical information involved in the 

process of human movement, mainly including the information of human 

displacement, velocity, acceleration and trajectory collected by the motion capture 

system, reflecting the dynamic characteristics of human movement. Recording the 
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changes of electrical signals in the process of muscle activity can provide 

information on the degree of muscle activation and motor control. Monitor the angle 

changes of human joints during exercise, and reflect the range of motion and 

flexibility of joints. Measuring the stress of joints under exercise and load can be 

used to evaluate exercise risk and rehabilitation effect. The above data types provide 

a real and diverse biomechanical scene for this experiment, which can fully verify 

the performance and robustness of Transformer model in dealing with complex and 

multidimensional time series data. 

Biomechanical data has the following main characteristics: 

High-dimensional: each data type usually contains multiple channels (such as 

multiple acquisition points of EMG signals) or multiple related variables (such as 

three-dimensional components of joint forces), which requires the model to process 

and extract multi-dimensional features at the same time. 

Time series: the data shows obvious time correlation, and there is a certain 

dependence between different time steps, which reflects the dynamic process of 

motion. 

Nonlinear: The relationship between different variables in the data is complex 

and nonlinear, such as the relationship between joint angle and muscle activity. 

Noise interference: There is a certain degree of noise in data acquisition, such as 

sensor error or environmental interference, so it is necessary to reduce the noise 

influence through the strong feature extraction ability of the model. 

In the experiment, the time series length t of data ranges from 100 to 500 time 

steps, and the sampling frequency is 100 Hz, that is, 100 data points are collected 

every second. 

In order to ensure the effectiveness of model training and the objectivity of 

prediction performance, the experimental data are divided into training set, 

verification set and test set according to the proportion of 70%, 15% and 15%: 

Training set (70%): used for learning model parameters to ensure that the model 

can fully adapt to the feature distribution of data. 

Verification set (15%): During the training process, it is used to evaluate the 

performance of the model in real time, monitor whether there is over-fitting problem, 

and assist in adjusting the super parameters of the model. 

Test set (15%): used to finally evaluate the prediction ability of the model and 

test its generalization ability on unknown data. 

The characteristics of its training, verification and test data are shown in Table 

1. 

Table 1. Characteristics of training, validation, and test data. 

Data Type Data Characteristics Data Length Training Samples Validation Samples Test Samples 

Joint Angles Multi-channel time series 500 350 75 75 

EMG Signals Single-channel time series 300 210 45 45 

Joint Forces Multi-channel high-dimensional time series 400 280 60 60 

4.2. Experimental platform and tools 

Hardware Environment: Intel i9 CPU, 32GB RAM, NVIDIA RTX 3090 GPU. 
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Software Environment: Python 3.8, PyTorch deep learning framework, NumPy 

data processing toolkit. 

4.3. Model parameter configuration 

The model parameter configuration is shown in Table 2. 

Table 2. Model parameter configuration. 

Parameter Value Description 

Sequence Length (T) 100 Number of time steps input into the model per batch 

Feature Dimension (d) 64 Dimensionality of input data features 

Number of Encoder 

Layers (N) 
4 Number of layers in the Transformer encoder 

Number of Attention 

Heads (h) 
8 Number of heads in the multi-head attention mechanism 

Feedforward Network 

Dimension (dff) 
256 Dimension of the feedforward hidden layer 

Learning Rate (η) 0.0005 Initial learning rate for the Adam optimizer 

Batch Size 64 Number of samples per iteration during training 

Training Epochs 100 Total number of epochs for training the model 

4.4. Evaluation metrics 

To comprehensively evaluate the prediction performance of the model, the 

following metrics are selected: 

Mean Squared Error (MSE): Measures the average squared difference between 

the predicted values and the actual values. 

Mean Absolute Error (MAE): Measures the average absolute difference 

between the predicted values and the actual values. 

Coefficient of Determination (R2): Evaluates how well the model fits the data. 

Pearson Correlation Coefficient: Measures the linear correlation between the 

predicted results and the actual values. 

Prediction Time: Represents the time required for the model to make 

predictions on the test dataset. 

5. Experimental results and metrics evaluation 

5.1. Mean squared error (MSE) 

Mean square error (MSE) is used to measure the average size of the square error 

between the predicted value and the real value of the model. The smaller the MSE 

value, the closer the prediction result of the model is to the real value, and the higher 

the prediction accuracy. In this experiment, the mean square error of the Transformer 

model in the joint angle, electromyography (EMG) and joint stress data is 

significantly lower than that of the LSTM and GRU models, which fully reflects its 

superior prediction accuracy. 

From the experimental results, the Transformer model has achieved the lowest 

MSE value on all data types. This shows that the Transformer model can better 

capture the characteristic distribution of the data and reduce the deviation between 
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the predicted results and the real values when dealing with complex biomechanical 

data. For example, in the joint angle prediction task, the MSE of Transformer model 

is significantly lower than that of LSTM and GRU, showing higher modeling ability 

and prediction accuracy. The results show that the Transformer model has obvious 

advantages in the prediction task in the field of biomechanics. 

Considering the complexity of the Transformer model, it will be beneficial to 

further understand what the model has learned. In order to help better understand the 

decision-making process of Transformer model, attention visualization technology 

can be used, which can show the focus of the model on input data in different 

forecasting tasks. By visualizing the attention weight, researchers can intuitively 

observe the attention degree of the model to different features (such as joint angle, 

EMG signal, etc.) at each moment, so as to deeply understand how the model makes 

predictions based on different input features. 

In the task of joint angle prediction, attention visualization can reveal whether 

the Transformer model is more inclined to pay attention to joint position or muscle 

activity signals at some time steps when predicting. This visualization can provide 

strong support for the interpretation of the model, and help researchers find the 

advantages and disadvantages of the model in specific tasks, and further optimize the 

model. The experimental results of mean square error are shown in Table 3. 

Table 3. Experimental results.  

Data Type Transformer Model LSTM Model GRU Model 

Joint Angles 0.0152 0.0234 0.0218 

EMG Signals 0.0221 0.0315 0.0287 

Joint Forces 0.0185 0.0269 0.0252 

Thus, a variation diagram as shown in Figure 1 can be drawn. 

 

Figure 1. MSE comparison across transformer, LSTM, and GRU models. 

5.2. Mean absolute error (MAE) 

The mean absolute error (MAE) is calculated as the average of the absolute 

errors between the predicted value and the real value. The significance of MAE is 
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that it directly reflects the overall deviation of the prediction results of the model. 

Compared with mean square error (MSE), MAE is less sensitive to outliers, so it has 

higher applicability in practical application, especially for evaluating the error 

distribution of individual samples. 

In this experiment, the MAE results of Transformer model further verify its 

remarkable advantages in the task of biomechanical data prediction. From the 

experimental data, it can be seen that the MAE of the Transformer model is 

obviously lower than that of the LSTM and GRU models in joint angle, 

electromyography (EMG) and joint stress, which fully shows that it has stronger 

overall fitting ability to biomechanical data and precise control ability to details. 

The lower the MAE value, the smaller the overall deviation of the model 

prediction and the closer the prediction result is to the real value. In this experiment, 

the MAE value of the Transformer model is the lowest on all kinds of biomechanical 

data, which means that the Transformer model can more comprehensively fit the 

complex characteristics of biomechanical data, especially in the data scene with 

noise interference, the model can still stably output the prediction results close to the 

true value. 

Considering the complexity of the Transformer model, further insight into what 

the model has learned will help to better understand the prediction process of the 

model. Using attention visualization technology, we can intuitively show the focus 

of Transformer model on different input features in the prediction process. By 

visualizing the attention weight of the model, researchers can understand which 

moments or input features (such as joint angle changes or EMG signal fluctuations at 

specific time points) have a great influence on the final prediction results when the 

model is predicted. 

In the task of joint angle prediction, attention visualization can reveal whether 

the Transformer model pays special attention to the joint motion mode or muscle 

activation signal when dealing with specific motion stages. This technology helps 

researchers to understand more deeply how the Transformer model makes 

predictions according to different characteristics, and further enhances the 

interpretability of its decision-making process. The experimental results of average 

absolute error are shown in Table 4. 

Table 4. Experimental results.  

Data Type Transformer Model LSTM Model GRU Model 

Joint Angles 0.0104 0.0152 0.0141 

EMG Signals 0.0178 0.0225 0.0213 

Joint Forces 0.0136 0.0181 0.0169 

Thus, a variation diagram as shown in Figure 2 can be drawn. 
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Figure 2. MAE comparison across transformer, LSTM, and GRU models. 

5.3. Coefficient of determination (R2) 

The determining coefficient (R2) reflects the quality of data fitting by the model, 

and the closer R is to 1, the better the fitting effect of the model is. From the R2 index, 

it can be seen that the Transformer model has obtained a determination coefficient 

close to 1 on three types of data, which shows a high fitting accuracy. Transformer 

model is excellent in capturing complex nonlinear relationships, and can effectively 

simulate the time series dynamics and dependencies in biomechanical data. In 

contrast, LSTM and GRU, because of their sequential processing mechanism, are 

easy to cause information loss in the case of long sequences, thus affecting the fitting 

accuracy. 

Considering the complexity of the Transformer model, further insight into what 

the model has learned will help to better understand the prediction process of the 

model. Therefore, the use of attention visualization technology can effectively help 

us understand the decision-making process of Transformer model in prediction. By 

showing the model’s attention to the input data at each moment, researchers can 

clearly see how Transformer makes predictions according to different input 

characteristics, such as joint angle changes and EMG signal fluctuations. 

For example, in the task of joint angle prediction, by visualizing the attention 

weight, researchers can observe whether the Transformer model pays special 

attention to the joint angle changes at some key moments in a specific time period, or 

whether the signal of muscle activity is used as an important prediction basis. These 

insights will help to deepen the understanding of the learning mechanism of the 

model in biomechanical data prediction, and further enhance the interpretability and 

interpretability of the model. The experimental results of determination coefficient 

are shown in Table 5. 

Table 5. Experimental results.  

Data Type Transformer Model LSTM Model GRU Model 

Joint Angles 0.982 0.955 0.961 

EMG Signals 0.974 0.942 0.949 

Joint Forces 0.98 0.951 0.957 
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Thus, a variation diagram as shown in Figure 3 can be drawn. 

 

Figure 3. R2 comparison across transformer, LSTM, and GRU models. 

5.4. Prediction time 

The prediction time measures the computational efficiency of the model, and 

the prediction time of Transformer model is obviously shorter than that of LSTM 

and GRU, which is mainly due to the self-attention mechanism and parallel 

computing strategy adopted by Transformer. In the LSTM and GRU models, the 

time steps of data need to be processed sequentially, so the calculation efficiency is 

low, while the Transformer model can process all time steps at the same time, which 

greatly improves the reasoning speed. This advantage is particularly significant when 

dealing with large-scale biomechanical data. 

Considering the complexity of the Transformer model, further insight into what 

the model has learned can help to better understand its efficiency. By using attention 

visualization technology, we can show how much attention the Transformer model 

pays to the input data at different time steps. By visualizing the attention weight, 

researchers can observe how Transformer pays attention to multiple time steps at the 

same time in the calculation process when processing time series data, and 

efficiently captures key features in the reasoning process. This parallel computing 

capability enables Transformer to significantly reduce the prediction time while 

maintaining high prediction accuracy. 

In the task of joint angle prediction, attention visualization can reveal how the 

Transformer model evaluates joint angle and EMG signal in parallel at each time 

step, so as to make accurate prediction in a short time. In contrast, the sequential 

calculation mode of LSTM and GRU limits their calculation efficiency, which makes 

their reasoning time longer when dealing with large-scale data. The experimental 

results of prediction time are shown in Table 6. 

Table 6. Experimental results. 

Data Type Transformer Model LSTM Model GRU Model 

Joint Angles 0.76 s 1.12 s 0.98 s 

EMG Signals 0.81 s 1.21 s 1.05 s 

Joint Forces 0.79 s 1.18 s 1.02 s 
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Thus, a variation diagram as shown in Figure 4 can be drawn. 

 

Figure 4. Prediction time comparison across transformer, LSTM, and GRU models. 

5.5. Pearson correlation coefficient 

Pearson correlation coefficient measures the linear correlation between the 

predicted value and the real value. From the Pearson correlation coefficient, the 

prediction result of Transformer model has the strongest correlation with the real 

value, especially in the joint angle and joint stress data, the Pearson correlation 

coefficient is close to 1. This shows that the Transformer model can accurately 

capture the internal laws and dynamic trends of biomechanical data, while LSTM 

and GRU also show good correlation, but they are slightly inferior to each other. 

Considering the complexity of the Transformer model, further insight into what 

the model has learned will help to better understand the reasons for its high 

correlation. By using attention visualization technology, we can show the attention 

of Transformer model to different features in prediction, and further reveal the 

process of potential laws of the model in capturing biomechanical data. By 

visualizing the attention weight, researchers can clearly see how the Transformer 

model identifies the key features that affect the prediction results in different time 

steps and understand how the model relates these features to make accurate 

predictions. 

In the task of joint angle and joint stress prediction, attention visualization can 

reveal how Transformer model focuses on the dynamic changes of joints in different 

time periods, and help the model capture the complex time dependence in 

biomechanical signals. Pearson correlation coefficient of joint dynamic changes in 

different time periods is shown in Table 7. 

Table 7. Experimental results.  

Data Type Transformer Model LSTM Model GRU Model 

Joint Angles 0.987 0.963 0.969 

EMG Signals 0.975 0.941 0.954 

Joint Forces 0.982 0.956 0.961 

Thus, a variation diagram as shown in Figure 5 can be drawn. 
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Figure 5. Pearson correlation comparison across transformer, LSTM, and GRU 

models. 

6. Discussion 

This study focuses on the biomechanical data-driven prediction and analysis 

based on Transformer model, aiming at capturing the temporal and spatial 

characteristics of biomechanical data through Transformer model and realizing the 

high-precision prediction task. Through experimental design and simulation 

empirical analysis, this paper uses five key indicators, namely mean square error 

(MSE), mean absolute error (MAE), determination coefficient (R), prediction time 

and Pearson correlation coefficient, to comprehensively evaluate the model 

performance. The experimental results show that the Transformer model is 

significantly superior to the traditional time series models (such as LSTM, GRU and 

ARIMA) in all indicators. 

From the two error indicators of MSE and MAE, the performance of 

Transformer model is better than that of LSTM, GRU and ARIMA models in joint 

angle, electromyography (EMG) and joint stress. Especially in the prediction of joint 

angle data, the MSE of Transformer model is 0.0152, which is 34.9% lower than that 

of LSTM, and the error of MAE index is 31.6% lower. This remarkable advantage 

shows that the Transformer model can accurately capture the local details and global 

dependencies of the data and reduce the overall error when dealing with complex 

biomechanical data. 

Through the evaluation of the determination coefficient (R2) and Pearson 

correlation coefficient, the Transformer model performs well in data fitting ability 

and linear correlation. In the experiment, the R2 values are all close to 1. For example, 

in the joint angle task, R2 is as high as 0.982, which shows that the Transformer 

model can highly restore the dynamic change law of real data. In addition, Pearson 

correlation coefficient reaches 0.987 in joint angle prediction, which reflects the high 

consistency between the predicted results of the model and the real values. 

In the aspect of forecasting time, Transformer model shows obvious 

computational advantages. Thanks to the self-attention mechanism and parallel 

computing, Transformer can effectively reduce the time complexity. In the joint 

angle task, the prediction time of Transformer model is only 0.76 s, which is 32.1% 
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shorter than that of LSTM (1.12 s), further verifying its efficiency in processing 

large-scale time series data. 

Transformer model shows consistent high accuracy and high efficiency on 

different biomechanical data types, which shows that it has good generalization 

ability and robustness to data types. This is especially critical for the high noise and 

nonlinear data that are common in biomechanical research, which embodies the 

practical application value of Transformer model in complex scenes. 
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