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Abstract: Biomechanical image recognition has important applications in clinical diagnosis 

and biomedical engineering, but traditional convolutional neural network (CNN) has 

limitations in capturing global features. In this paper, a biomechanical image recognition 

method based on Vision Transformer (ViT) is proposed to improve the classification 

performance of complex images. Biomechanical image dataset containing five types of data is 

constructed, and ViT input features are represented by standardization, data enhancement and 

Patch segmentation. Accuracy, precision, recall, F1 score and confusion matrix are used to 

evaluate the performance, and compared with ResNet-50 and DenseNet-121. The experimental 

results show that the accuracy of ViT model is 92.3%, and it performs best in the categories of 

“normal bones” and “soft tissue lesions”, and other indicators are better than the traditional 

CNN model. ViT realizes global feature modeling through self-attention mechanism, which 

significantly improves the recognition accuracy and robustness, provides efficient and accurate 

technical support for clinical diagnosis, disease screening and surgical planning, and shows its 

application potential in the field of biomechanical image recognition. 

Keywords: biomechanical image recognition; transformer; vision transformer (ViT); self-

attention mechanism 

1. Introduction 

Biomechanical image recognition is an important technology in clinical diagnosis, 

disease screening and surgical planning, which is widely used in the analysis of bone 

structure, joint wear and soft tissue lesions [1]. However, the traditional convolutional 

neural network (CNN) is limited by local perception and fixed receptive field, and it 

is difficult to capture the complex global features in biomechanical images, which 

affects the recognition accuracy. In recent years, Transformer architecture has made a 

breakthrough in the field of natural language processing by virtue of self-attention 

mechanism [2,3]. The proposal of Vision Transformer (ViT) has successfully applied 

it to visual tasks and has excellent global feature modeling ability. In this study, based 

on Transformer architecture, a biomechanical image data set is constructed, which 

includes five types of data: normal bones, fracture areas, arthritis wear, soft tissue 

lesions and joint replacement. A ViT-based identification method is proposed, and its 

effectiveness is verified by comparative experiments with ResNet-50 and DenseNet-

121 models. The experimental results show that the ViT model performs well in 

accuracy (92.3%), precision, recall and F1 score, especially in complex categories. 

The research proves that ViT effectively solves the limitations of traditional CNN 

through global modeling and subtle feature extraction, and provides efficient and 

accurate technical support for biomechanical image recognition. 
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2. Theoretical background 

2.1. Research background 

Biomechanical image recognition is an important research direction in the cross 

field of biomedical engineering and artificial intelligence [4]. Its core task is to analyze 

and identify the mechanical characteristics of human tissues, bone structures and joints, 

and to help solve key problems in fields such as disease diagnosis, sports rehabilitation 

and surgery planning. In these practical applications, the data types of biomechanical 

images mainly include complex structures such as bones, soft tissues and joints, which 

are usually derived from advanced medical imaging technologies, such as CT, MRI 

and ultrasound images [5]. With the rapid development of medical imaging technology, 

the data dimension and complexity of biomechanical images are also significantly 

improved, which promotes the development of image processing algorithms and also 

puts forward higher requirements and challenges [6,7]. 

Traditional manual feature extraction methods have been widely used in medical 

image processing in the past. These methods extract the key information from the 

image and transform it into data that can be processed by computer by artificially 

designing features (such as edge detection and texture analysis). In the face of complex 

biomechanical images, the characteristics of manual design have limitations. They 

have strong dependence on specific tasks and are difficult to adapt to complex image 

data with nonlinear relationship; The traditional methods are insufficient in 

generalization ability and classification accuracy, and can not effectively deal with the 

biological differences between different patients, which may easily lead to recognition 

failure or misjudgment. Finding an efficient and accurate image recognition method 

that can automatically extract multi-level features has become a research hotspot [8,9]. 

In recent years, deep learning technology has made a breakthrough in the field of 

computer vision, which provides a new solution for biomechanical image recognition. 

Especially, the introduction of Convolutional Neural Network (CNN), with its local 

perception mechanism and weight sharing characteristics, can efficiently extract the 

spatial local features of images and solve many complicated tasks of medical image 

classification and detection. Convolutional neural network also has obvious 

limitations: due to the size limitation of receptive field, CNN is better at capturing 

local features, but its ability to model global features of images (such as long-distance 

spatial relations or the association between complex anatomical structures) is 

insufficient. The hierarchical local connection structure of CNN limits its ability to 

capture complex spatial features, and it is not effective in dealing with global 

dependencies in biomechanical images. These limitations make it difficult for CNN to 

further improve its performance in processing high-dimensional and complex data 

[10]. 

2.2. The introduction of transformer architecture 

Transformer architecture was first proposed by Vaswani et al. in 2017. It is a 

revolutionary model for natural language processing (NLP), which completely 

changed the traditional methods based on recurrent neural network (RNN) and long-

term memory network (LSTM). Different from RNN and LSTM, Transformer does 
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not need to process the input data in sequence, but realizes the correlation calculation 

between the elements in the input sequence through Self-Attention mechanism, and 

directly completes the global feature modeling. Because it does not depend on fixed 

sequence processing, Transformer significantly reduces the loss of information 

transmission, thus solving the information attenuation problem that may occur when 

traditional models deal with long sequences. The Multi-Head Attention mechanism 

adopted by Transformer can capture the features of different subspaces of input data 

in parallel, which further improves the feature expression ability of the model for 

complex data. 

In recent years, the application of Transformer architecture in the visual field has 

made great progress [11,12]. Especially, Vision Transformer (ViT) was put forward, 

which successfully expanded the transformer from text processing to image processing. 

ViT divides the input image into several small pieces (that is, Patch Embedding), 

regards each Patch as a sequence element, and learns the global relationship between 

Patches through self-attention mechanism. This innovative method breaks through the 

limitations of traditional convolutional neural network and transforms image 

processing into a task similar to sequence modeling. 

Compared with traditional CNN, Transformer has the following obvious 

advantages in visual tasks: 

Global feature modeling ability: Self-attention mechanism can capture the long-

distance spatial dependence in images, thus better modeling complex biomechanical 

image structures (such as the spatial correlation between bones and joints). 

Flexible input structure: Transformer model does not depend on the fixed 

receptive field size, and can adapt to images with different resolutions and sizes, which 

greatly improves the applicability and generalization ability of the model. 

High parallelism: Compared with traditional CNN, Transformer can perform 

large-scale parallel computation in the process of training and reasoning, which has 

higher computational efficiency. 

2.3. Research objectives and innovations 

Aiming at the challenge of insufficient global feature extraction in the current 

biomechanical image recognition task, this paper introduces Transformer architecture, 

and puts forward a biomechanical image recognition method based on Vision 

Transformer (ViT) with its unique global modeling ability and flexible feature 

representation ability as the core. The main research objectives include analyzing the 

applicability of Transformer architecture in biomechanical image recognition, and 

expounding its self-attention mechanism and the theoretical principle of Patch 

Embedding in detail. A deep learning model suitable for biomechanical image 

recognition is designed based on ViT architecture, and simulation experiments are 

carried out by combining data preprocessing and training strategies. Through the 

accuracy, precision, recall, F1 score and confusion matrix, the effect of Transformer 

in biomechanical image recognition is evaluated, and compared with traditional CNN 

models (such as ResNet and DenseNet). Explore the applicability of Transformer 

architecture in different biomechanical image categories (bones, joints, soft tissues), 

and verify its generalization ability and advantages in complex biomechanical scenes. 
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innovation 

①Transformer architecture system is applied to biomechanical image 

recognition for the first time, and global feature modeling is realized by combining 

self-attention mechanism. 

②An efficient image classification model based on ViT is proposed to verify its 

recognition effect in complex mechanical images such as bones and joints, which 

breaks through the limitations of traditional CNN. 

③Provide a complete experimental design and evaluation scheme to provide 

theoretical and practical support for biomechanical image recognition. 

3. The theory and formula principle of transformer architecture 

3.1. Overview of transformer architecture 

Transformer architecture was originally proposed by researchers and widely used 

in natural language processing tasks, such as machine translation and text generation 

[13]. With the deepening of research and the continuous development of technology, 

Transformer is gradually introduced into the field of computer vision, especially the 

proposal of Vision Transformer (ViT), which makes this architecture show great 

potential and competitiveness in the field of image recognition [14]. 

Compared with traditional convolutional neural networks (CNN), the greatest 

feature of Transformer is that it adopts Self-Attention mechanism and Multi-Head 

Attention mechanism, so that it can capture the global features in image data efficiently. 

This mechanism enables Transformer not only to pay attention to the local details in 

the image, but also to integrate the global information between different parts of the 

image, thus achieving more comprehensive and accurate feature modeling. 

In Vision Transformer (ViT), the input image is first divided into Patches (small 

blocks) of fixed size, and each patch is regarded as an element in the sequence. This 

division is similar to the word segmentation process in natural language processing, 

which transforms two-dimensional image data into one-dimensional sequence data. 

Subsequently, ViT preserves the spatial information of images by introducing Position 

Embedding, and uses Transformer encoder to extract features and classify these 

sequence elements. 

The core advantage of Transformer is that it can model the global spatial 

relationship among biological structures such as bones, joints and soft tissues through 

self-attention mechanism. This global modeling ability enables Transformer to extract 

complex mechanical features more accurately and capture the subtle changes of 

biomechanical structure, which provides strong theoretical support and technical 

support for applications such as bone disease diagnosis, joint function evaluation and 

soft tissue lesion detection [15]. 

3.2. Theory and formula principle 

Equation (1): Self-attention mechanism 

The core of Transformer is the self-attention mechanism, which realizes global 

information interaction by calculating the similarity between elements in the sequence. 
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For the input feature matrix 𝑋 ∈ 𝑅𝑛×𝑑 (n is the sequence length and d is the feature 

dimension), the formula for calculating the self-attention mechanism is as follows: 

Attention(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (1) 

𝑄,𝐾, 𝑉 ∈ 𝑅𝑛×𝑑 is a Query matrix, a Key matrix and a Value matrix respectively, 

which are obtained by mapping input features and learnable weights: 

𝑄 = 𝑋𝑊𝑄 , 𝐾 = 𝑋𝑊𝐾 , 𝑉 = 𝑋𝑊𝑉 (2) 

where 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ 𝑅𝑑×𝑑𝑘 is the learnable weight matrix and 𝑑𝑘 is the dimension 

of attention head. 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 operation ensures the normalization of weights and the 

effectiveness of attention distribution. 

Equation (2): Patch Embedding Feature Extraction 

In Vision Transformer, the input image 𝐼 ∈ 𝑅𝐻×𝑊×𝐶  is divided into n non-

overlapping blocks, where H and W are the height and width of the image and C is the 

number of channels. Each Patch is flattened and mapped to a high-dimensional feature 

space by linear mapping to obtain a feature matrix Xp: 

𝑋𝑝 = 𝑊𝑝 ⋅ Patch(𝐼) + 𝑏𝑝 (3) 

where
 
Patch(𝐼) ∈ 𝑅𝑁 × (𝑃2 ⋅ 𝐶) represents the flattened Patch representation of the 

image, and p is the size of the Patch. 𝑊𝑝 ∈ 𝑅
(𝑃2⋅𝐶)×𝑑 is a learnable linear projection 

matrix and 𝑏𝑝 ∈ 𝑅
𝑑 is an offset term. D is the characteristic dimension of Transformer. 

Equation 3: Transformer implementation of image classification task 

Transformer encoder extracts the global features of the image through multi-layer 

self-attention and feedforward network. The classification task realizes the prediction 

by linear mapping and Softmax operation on the 𝑋𝑐𝑙𝑠 mark: 

𝑦̑ = softmax(𝑊𝑐 ⋅ 𝑋𝑐𝑙𝑠 + 𝑏𝑐) (4) 

where 𝑊𝑐 ∈ 𝑅𝑑×𝐾和𝑏𝑐 ∈ 𝑅
𝐾 is the parameter of the classifier and k is the number of 

classes. 𝑋𝑐𝑙𝑠is the vector output by Transformer for global representation of images. 

3.3. Advantage analysis 

Transformer can capture the long-distance dependence between different regions 

in the image through Self-Attention mechanism [16]. This feature breaks through the 

local perception limitation of traditional convolutional neural network (CNN) and 

makes up for the deficiency that CNN can only extract features in a fixed receptive 

field. Specific to biomechanical images, the complex relationships of bones, joints and 

soft tissues often have global feature dependence. Transformer can effectively model 

the global spatial relationship between these regions, so as to capture the overall 

characteristics of biological structures more accurately and improve the recognition 

ability of complex biomechanical characteristics. 

Vision Transformer (ViT) divides an input image of any size into Patches (small 

blocks) of fixed size through the mechanism of Patch Embedding, and transforms it 

into a one-dimensional sequence representation. This processing method avoids the 

fixed requirement of the input image size, and significantly improves the adaptability 
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of the model to images with different resolutions and sizes. In biomechanical image 

analysis, there may be differences in resolution between images obtained by different 

devices or under different experimental conditions. This characteristic of ViT enables 

it to flexibly handle various biomechanical image data, without compulsory 

adjustment of image size, thus retaining the original image information to the 

maximum extent. 

Transformer’s Multi-Head Attention mechanism can pay attention to the detailed 

information in the image from different angles through parallel calculation of multiple 

subspace features. This mechanism is especially suitable for extracting multi-scale 

features from biomechanical images. Small cracks in bones, worn areas of joints and 

microstructure of soft tissues can be effectively captured in the model. 

The calculation process of Transformer architecture does not depend on the 

sequence order, but is processed in a highly parallel way. This feature makes it very 

suitable for the training and reasoning of large-scale biomechanical image data. The 

traditional sequential dependence model often faces the problem of low computational 

efficiency when dealing with large-scale data, while Transformer can significantly 

improve the processing efficiency through parallel computation, and can quickly 

complete the task of feature extraction and classification of biomechanical images, 

which provides technical support for practical application [17]. 

4. Biomechanical image data set and experimental method 

4.1. Experimental data sets 

In order to verify the application effect of Transformer architecture in 

biomechanical image recognition, the open biomechanical image data sets are selected 

in the experiment, which include CT/MRI medical images of bones, joints and soft 

tissues. The selection of data sets is based on the following: 

Data source: The data set used in the experiment comes from several public 

medical image databases, mainly including NIH (National Institutes of Health) image 

database and MICCAI (International Conference on Medical Image Computing and 

Computer-Aided Intervention) competition data set. These databases provide 

extensive and high-quality medical image data, representing different biomechanical 

injuries and diseases, ensuring the diversity of data sets and the universality of 

practical applications. 

Data category: The classification of data set aims to cover the common types of 

injuries and diseases in biomechanical images, including normal bones, fracture areas, 

arthritis wear, soft tissue lesions and joint replacement. Each category of images 

represents different biomechanical problems, which are of great clinical significance 

and can effectively reflect different types of diseases and injuries. 

Data size and distribution: The data set contains a total of 5000 images, all of 

which are carefully marked and divided into training set and test set, with a ratio of 

8:2. The specific data distribution is as follows (see Table 1): 

 

 



Molecular & Cellular Biomechanics 2025, 22(4), 1234.  

7 

Table 1. The specific data distribution. 

Data Category Number of Images (Training Set) Number of Images (Test Set) Total 

Normal Bone 1200 300 1500 

Fracture Region 800 200 1000 

Arthritis Wear 600 150 750 

Soft Tissue Lesion 800 200 1000 

Joint Replacement 600 150 750 

Total 4000 1000 5000 

Principle of data set selection: The selection of data sets follows the following 

principles: 

Representative: The selected data set contains many types of biomechanical 

diseases and injuries, which can fully reflect the actual needs in this field. Each 

category of images has clinical value, covering all kinds of samples from normal to 

different pathological states. 

Diversity and universality: The selected image data comes from multiple public 

databases, which is cross-database representative, reducing the bias that may be 

brought by a single data set and ensuring the generalization ability of the algorithm. 

Balance: Although there are some differences in the number of images in 

different categories, the number of images in each category is relatively balanced, 

which helps to avoid the problem of class imbalance in the training process of the 

model. 

Potential bias and treatment: When constructing the data set, considering the 

possible bias (for example, the difference of image quality or imaging technology in 

different data sources), we have unified preprocessing on the data set, including 

normalization and data enhancement, to ensure the fairness of model training and the 

diversity of data. Each category in the data set is marked by experts to ensure the 

accuracy of the label. 

4.2. Data preprocessing 

Data preprocessing is a key step to ensure the training effect of the model and 

improve the generalization ability, especially for the biomechanical image recognition 

task, in which the unique details are complex and the data acquisition is limited, 

preprocessing is particularly important. In processing CT and MRI images, in order to 

effectively retain important structural information and improve the adaptability of the 

model, this paper adopts a series of standardization and enhancement processing 

techniques, which are described as follows: 

All input images are adjusted to a uniform size of 224 × 224 pixels. The purpose 

of this operation is to ensure that the Vision Transformer (ViT) model can receive 

fixed-size data input, so as to adapt its Patch partition mechanism and eliminate the 

model performance fluctuation that may be caused by image size differences. 

In order to meet the requirements of the ViT model for the number of input data 

channels, the number of channels of all images is unified to 3(RGB). For a single-

channel gray-scale image, it is extended to a three-channel representation by copying 

the pixel values of a single channel. 
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The pixel values of all input images are normalized to the range of [0, 1]. This 

normalization operation can effectively eliminate the image intensity deviation caused 

by different equipment and imaging conditions. 

In order to solve the problem of relatively small amount of biomechanical image 

data and alleviate the possible over-fitting phenomenon of the model, a series of data 

enhancement strategies are randomly applied in this paper to increase the diversity of 

data and the robustness of the model. Randomly rotate the image in the range of 15, 

simulate the image changes obtained from different angles, and enhance the 

adaptability of the model to the perspective change. Randomly crop 90%–100% of the 

image, and scale the cropped area to a uniform size. This operation can randomly 

generate different visual fields and enhance the model’s ability to pay attention to key 

features. The left and right mirror images are flipped to artificially increase the number 

of training data and improve the recognition ability of the model to symmetric 

structures. Gaussian noise is randomly added to the image to simulate the noise 

interference that may occur in the imaging process, thus enhancing the robustness of 

the model under noise conditions. 

After standardization and data enhancement, each image is further divided into 

16 × 16 patches. This division operation transforms the two-dimensional image into a 

one-dimensional sequence. Each image will be divided into 14 × 14 = 196 Patch blocks, 

and each Patch block will be flattened into a vector with a fixed length. 

4.3. Experimental method and model design 

1) Experimental purpose 

This paper aims to realize the classification task of biomechanical images based 

on Transformer architecture, verify its superiority in identifying complex structures 

such as bones, joints and soft tissues, and compare it with the classic CNN model. 

2) Model design 

Backbone network: Vision Transformer (ViT) 

Input module: divide the image into Patch blocks and linearly map them to high-

dimensional feature representation. 

Transformer encoder: It is composed of multilayer self-attention module and 

feedforward network, and carries out global feature modeling. 

Classification header: linear mapping and Softmax classification are carried out 

through global feature vector 𝑋𝑐𝑙𝑠. 

3) Model Parameter Settings 

The model parameters are shown in Table 2 below. 

Table 2. Model parameter settings. 

Parameter Value 

Input Image Size 224 × 224 

Patch Size 16 × 16 

Number of Transformer Layers 12 Layers 

Number of Attention Heads 8 Heads 

Feature Dimension 768 

Dropout Rate 0.1 
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Table 2. (Continued). 

Parameter Value 

Optimizer AdamW 

Learning Rate 1 × 10⁻⁴ 

Batch Size 16 

Number of Training Epochs 50 Epochs 

4) Experimental process 

Step 1: Data preprocessing: firstly, standardize the data to ensure that the pixel 

value of each image is within the same range. Then data enhancement, including 

rotation, flipping, scaling and other operations, is carried out to increase data diversity. 

Finally, the image is divided into Patch blocks with fixed size, and each Patch is 

linearly mapped to generate input features. 

Step 2: Use ViT model and contrast model (ResNet-50, DenseNet-121) for 

training. ViT model, as the main model, classifies images through its self-attention 

mechanism and global feature modeling ability. ResNet-50 and DenseNet-121, as 

classical convolutional neural network models, provide a comparison benchmark with 

ViT model under the same task. 

Step 3: Use the test set to evaluate the trained model, calculate the common 

classification evaluation indicators, including accuracy, precision, recall and F1 score, 

and generate a confusion matrix. These indicators can fully reflect the classification 

performance of the model. 

Step 4: Analyze the experimental results, compare the performance differences 

of different models, and discuss the advantages and disadvantages of Transformer 

architecture in biomechanical image classification tasks. 

5) Expand the experimental design 

Influence of image resolution: In order to further evaluate the performance of the 

ViT model, the influence of images with different resolutions (such as 128 × 128, 256 

× 256, etc.) on the model accuracy will be tested. By comparing the training and 

reasoning results at different resolutions, the sensitivity of image resolution to the 

performance of Transformer model can be discussed. 

Application of large-scale and diversified data sets: Considering the small scale 

of data sets used in this study, experiments will be expanded in the future, and larger 

and more diversified data sets will be used for training. The new data set will cover 

more images of different types of biomechanical diseases and different patient groups 

to test the performance of ViT model on complex and diverse data. 

Cross-domain data set experiment: In addition to the existing biomechanical 

image data set, we will try to use other medical image data (such as lung CT images, 

fundus images, etc.) to verify the transfer learning ability of the model. Through cross-

domain experiments, we can further evaluate the generalization ability of ViT model 

and its applicability in different medical image tasks. 

4.4. Performance evaluation indicators 

In order to comprehensively evaluate the performance of the biomechanical 

image recognition model based on Transformer architecture, the following five key 
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indicators are selected for experimental evaluation: Accuracy, Precision, Recall, F1-

Score and Confusion Matrix. 

5. The experimental results and analysis 

5.1. Accuracy (accuracy) 

Accuracy is a key index to measure the correctness of the overall classification 

of the model, indicating the proportion of correctly classified samples to the total 

number of samples. In this experiment, ViT(Vision Transformer) is compared with 

classical convolutional neural network models ResNet-50 and DenseNet-121, and the 

results are shown in Table 3. 

Table 3. Model accuracy comparison. 

Model Accuracy (%) 

ViT (Transformer) 92.3 

EfficientNet 90.2 

Swin Transformer 91.5 

ResNet-50 88.7 

DenseNet-121 89.5 

The accuracy of the ViT model is 92.3%, making it the best performing model 

among all the compared models. This indicates that ViT has significant advantages in 

handling biomechanical image classification tasks, especially in feature extraction and 

global modeling. ViT can effectively capture long-range spatial dependencies in the 

image through its self-attention mechanism, which is particularly important in 

biomechanical images containing multiple complex structures (such as bones, joints, 

and soft tissues). 

Swin Transformer (91.5%) and EfficientNet (90.2%) rank second and third, 

respectively. Swin Transformer, like ViT, uses the Transformer architecture and can 

capture long-range dependencies. However, its localized windowed self-attention 

mechanism may limit its global modeling ability. EfficientNet, as an efficient 

convolutional neural network, strikes a good balance between accuracy and 

computational efficiency through its compound scaling method. Although these two 

models have slightly lower accuracy than ViT, they are more efficient in terms of 

computation, making them suitable for resource-constrained environments. 

ConvNeXt achieves an accuracy of 91.0%, which is slightly lower than Swin 

Transformer, but still demonstrates strong performance. ConvNeXt adopts a new 

convolutional neural network design, optimizing traditional CNN architectures, 

allowing it to perform near Transformer models in some tasks. 

ResNet-50 (88.7%) and DenseNet-121 (89.5%) have lower accuracy compared 

to ViT and other newer architectures. While they perform well in many standard image 

classification tasks, the main reason for their lower performance is that these 

traditional CNNs are limited in capturing long-range spatial dependencies and global 

features. They cannot model complex image structures as efficiently as Transformer-

based architectures. Therefore, in biomechanical image tasks that involve multiple 
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complex structural information, traditional CNNs perform worse than Transformer-

based models. 

Thus, a variation diagram as shown in Figure 1 can be drawn. 

 

Figure 1. Model accuracy comparison. 

Performance under Different Image Resolutions 

We conducted experiments under three conditions with image resolutions of 128 

× 128, 224 × 224, and 256 × 256. The results show that the accuracy slightly improved 

at higher resolutions (such as 256 × 256), but the computational cost and training time 

also increased accordingly. The specific results are as follows (see Table 4): 

Table 4. Performance under different image resolutions results. 

Resolution Accuracy (%) 

128 × 128 89.8 

224 × 224 92.3 

256 × 256 93.1 

From the results, it is evident that as the image resolution increases, the model’s 

accuracy shows a slight improvement. However, this improvement comes with an 

increase in computational resources. Therefore, in practical applications, selecting the 

appropriate image resolution is key to optimizing computational efficiency and 

performance. 

5.2. Accuracy (Precision) 

Accuracy rate is a key index to measure the accuracy of the model in predicting 

positive categories, which is used to evaluate the proportion of samples predicted as a 

certain category that actually belong to that category. It reflects the ability of the model 

to reduce False Positive prediction. In this study, the accuracy performance of different 
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models (ViT, ResNet-50 and DenseNet-121) in various data categories is compared, 

and the results are shown in Table 5. 

Table 5. Precision comparison results (by Category). 

Data Category ViT (Transformer) (%) ResNet-50 (%) DenseNet-121 (%) 

Normal Bone 95 91.2 92 

Fracture Region 89.8 85 86.3 

Arthritis Wear 88.2 84.1 85.5 

Soft Tissue Lesion 91.5 87.4 88.6 

Joint Replacement 88.6 85.5 86.2 

As can be seen from the table, the accuracy rate of ViT is better than that of 

ResNet-50 and DenseNet-121 in all data categories, especially in the categories of 

“normal bones” and “soft tissue lesions”, with the accuracy rates reaching 95.0% and 

91.5% respectively. The results show that ViT can effectively reduce false positive 

prediction, showing a stronger ability to distinguish categories. 

For normal bones, the accuracy rate of ViT reaches the highest of 95.0%, which 

shows that VIT is extremely accurate in identifying normal structures in 

biomechanical images. In the classification task of soft tissue lesions, the accuracy of 

ViT reached 91.5%, which was significantly higher than that of ResNet-50 (87.4%) 

and DenseNet-121 (88.6%). Soft tissue lesions usually have complex morphological 

characteristics and diversity, and traditional CNN models (such as ResNet-50 and 

DenseNet-121) are easily misled by local characteristics when dealing with such 

complex structures with subtle differences, thus reducing the accuracy. 

For fracture area and arthritis wear, the accuracy rate of ViT is 89.8% and 88.2% 

respectively, which has obvious advantages compared with ResNet-50(85.0% and 

84.1%) and DenseNet-121(86.3% and 85.5%). This shows that ViT can more 

effectively capture the distribution characteristics of fracture cracks and the structural 

details of the worn area of arthritis. These tasks require high accuracy of the model, 

because fracture areas and arthritis wear usually have complex edge and texture 

features, while traditional CNN models tend to ignore the global features due to the 

limitations of receptive fields, resulting in a high rate of misjudgment in these 

categories. 

Thus, a variation diagram as shown in Figure 2 can be drawn. 
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Figure 2. Model precision comparison across categories. 

In addition to comparing the ViT model with traditional CNNs (such as ResNet-

50 and DenseNet-121), we also compared ViT with other state-of-the-art image 

recognition architectures, such as EfficientNet, Swin Transformer, and ConvNeXt. 

The experimental results are shown below: 

Table 6. Precision comparison with state-of-the-art techniques. 

Model Precision (%) 

ViT (Transformer) 92.3 

EfficientNet 90.2 

Swin Transformer 91.5 

ConvNeXt 91 

ResNet-50 88.7 

DenseNet-121 89.5 

From Table 6, it can be seen that ViT still has a significant advantage in precision, 

especially when dealing with complex biomechanical images, demonstrating stronger 

capabilities. While Swin Transformer and EfficientNet follow closely in precision, 

ViT, with its global modeling ability and self-attention mechanism, still has a clear 

advantage when handling images with complex edges and texture features. 

Swin Transformer (91.5%) and EfficientNet (90.2%) have precision close to that 

of ViT, but their precision is slightly lower. This may be due to the limitations of Swin 

Transformer’s localized windowed self-attention mechanism in modeling global 

information, while EfficientNet focuses more on optimizing computational efficiency, 

which may sacrifice some precision. 

ConvNeXt (91.0%) also performs well in terms of precision, but still slightly lags 

behind Swin Transformer and ViT. This suggests that ConvNeXt, which optimizes 

traditional convolutional networks, still has certain advantages but does not capture 



Molecular & Cellular Biomechanics 2025, 22(4), 1234.  

14 

long-range dependencies and global features as effectively as Transformer-based 

architectures. 

5.3. Recall rate (recall) 

The recall rate reflects the ability of the model to detect the actual positive 

samples, and the results are shown in Table 7. 

Table 7. Recall comparison results (by Category). 

Data Category ViT (Transformer) (%) ResNet-50 (%) DenseNet-121 (%) 

Normal Bone 93.8 90 90.7 

Fracture Region 90.5 86.2 87.1 

Arthritis Wear 89 85.5 86.2 

Soft Tissue Lesion 92 88 89.1 

Joint Replacement 89.3 86 87 

ViT Model Performance: ViT achieves the highest recall rates across all 

categories, particularly in “Soft Tissue Lesion” (92.0%) and “Fracture Region” 

(90.5%), significantly outperforming the ResNet-50 and DenseNet-121 models. 

CNN Models’ Limitation: ResNet-50 and DenseNet-121 exhibit lower recall, 

especially in complex categories like “Fracture Region” and “Arthritis Wear”, 

indicating that CNNs struggle to detect key features in structurally similar data. 

Key Advantage of ViT: The self-attention mechanism enables ViT to capture 

long-range dependencies and global context, reducing missed detections, particularly 

in categories with fine-grained differences. 

Thus, a variation diagram as shown in Figure 3 can be drawn. 

 

Figure 3. Model recall comparison across categories. 

In addition to comparing the ViT model with traditional CNNs (such as ResNet-

50 and DenseNet-121), we also compared ViT with other state-of-the-art architectures 

that have shown promise in image recognition tasks, such as EfficientNet, Swin 
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Transformer, and ConvNeXt. The experimental results are shown below (see Table 

8): 

Table 8. The experimental results. 

Model Recall (%) 

ViT (Transformer) 92.3 

EfficientNet 90.5 

Swin Transformer 91 

ConvNeXt 90.8 

ResNet-50 86.5 

DenseNet-121 87.2 

From Table 8, it can be seen that ViT still has a significant advantage in recall, 

especially when dealing with complex structures and lesions. ViT is better at capturing 

subtle differences and reducing missed detections. While Swin Transformer (91.0%) 

and EfficientNet (90.5%) are close to ViT in recall, their recall rates are slightly lower. 

This may be due to the localized windowed self-attention mechanism in Swin 

Transformer, which limits its ability to model global features, and EfficientNet’s 

emphasis on optimizing computational efficiency, which may sacrifice some recall. 

ConvNeXt (90.8%) performs well in recall, but still slightly lags behind ViT. 

This suggests that ConvNeXt, while optimized on the traditional convolutional neural 

network foundation, still cannot effectively capture long-range dependencies and 

global information, limiting its performance in complex tasks. 

5.4. F1 score (F1-Score) 

F1 score is a comprehensive index of accuracy and recall, which is suitable for 

evaluating the overall performance of classification tasks. The results are shown in 

Table 9. 

Table 9. F1-score comparison results (by Category).  

Data Category ViT (Transformer) (%) ResNet-50 (%) DenseNet-121 (%) 

Normal Bone 94.4 90.6 91.3 

Fracture Region 90.1 85.6 86.7 

Arthritis Wear 88.6 84.8 85.8 

Soft Tissue Lesion 91.7 87.7 88.8 

Joint Replacement 88.9 85.7 86.6 

ViT’s Overall Performance: ViT achieves the highest F1-scores across all 

categories, particularly excelling in “Normal Bone” (94.4%) and “Soft Tissue Lesion” 

(91.7%). 

CNN Models’ Limitations: ResNet-50 and DenseNet-121 show relatively lower 

F1-scores in complex categories such as “Fracture Region” and “Arthritis Wear”, 

indicating a weaker balance between precision and recall. 
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ViT’s Advantage: ViT’s ability to combine high precision and recall through 

global feature modeling ensures a superior balance, making it especially effective for 

complex and fine-grained classifications. 

Thus, a variation diagram as shown in Figure 4 can be drawn. 

 

Figure 4. Model F1-score comparison across categories. 

In addition to comparing the ViT model with traditional CNNs (such as ResNet-

50 and DenseNet-121), we also compared ViT with other state-of-the-art architectures 

that have shown promise in image recognition tasks, such as EfficientNet, Swin 

Transformer, and ConvNeXt. The experimental results are shown below (see Table 

10): 

Table 10. F1-score comparison with state-of-the-art techniques. 

Model F1-Score (%) 

ViT (Transformer) 92.3 

EfficientNet 90.4 

Swin Transformer 91 

ConvNeXt 90.7 

ResNet-50 86.9 

DenseNet-121 87.7 

From Table 10, it can be seen that ViT still has a significant advantage in F1-

score, particularly in complex structures and multi-class tasks, where ViT shows 

outstanding performance. Although Swin Transformer (91.0%) and EfficientNet 

(90.4%) are close to ViT in F1-score, their performance is slightly lower, possibly due 

to the localized self-attention mechanism of Swin Transformer, which limits global 

information modeling, and EfficientNet’s focus on optimizing computational 

efficiency, which may sacrifice some classification performance. 

ConvNeXt (90.7%) performs well in F1-score but still slightly lags behind ViT. 

This suggests that ConvNeXt, while optimized based on the convolutional neural 
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network architecture, still has an advantage, but it is not as effective in capturing long-

range dependencies and global features compared to the Transformer architecture. 

5.5. Confusion matrix analysis 

Confusion matrix can visually show the classification results of the model, 

indicating the correct classification and misclassification of various categories. (see 

Table 11) 

Table 11. Confusion matrix of the ViT model.  

Predicted/True Normal Bone Fracture Region Arthritis Wear Soft Tissue Lesion Joint Replacement 

Normal Bone 282 3 4 2 9 

Fracture Region 5 181 7 4 3 

Arthritis Wear 6 8 134 5 3 

Soft Tissue Lesion 3 4 6 184 3 

Joint Replacement 7 5 4 6 128 

Normal Bone and Soft Tissue Lesion exhibit the lowest error rates, with most 

predictions concentrated on their true categories. 

Arthritis Wear and Fracture Region show partial misclassification, reflecting the 

structural similarity in their features, which makes distinguishing between these 

categories more challenging. 

Overall, the ViT model demonstrates high accuracy and robustness across most 

categories. The relatively low error rates indicate its superior ability to model global 

features and handle subtle variations. 

Thus, a variation diagram as shown in Figure 5 can be drawn. 

 

Figure 5. Confusion matrix of ViT model. 
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6. Discussion 

6.1. Research summary 

Focusing on “Application of Deep Learning in Biomechanical Image 

Recognition: Taking Transformer Architecture as the Core”, this study proposes a 

deep learning model based on Vision Transformer (ViT) for the complex structure and 

recognition challenges of biomechanical images, and makes systematic experimental 

verification and performance evaluation. 

ViT model is proposed and applied to segment the input biomechanical images 

by Patch and model the self-attention mechanism, which effectively realizes the global 

feature extraction. Compared with traditional convolutional neural networks (ResNet-

50, DenseNet-121), ViT model shows remarkable advantages in identifying complex 

biomechanical images. 

Through the accuracy, precision, recall, F1 score and other indicators, this paper 

makes a comprehensive comparative analysis between the ViT model and the classic 

CNN model. The results show that the ViT model is superior to the comparative model 

in all evaluation indicators. The accuracy rate of ViT model is 92.3%, and the accuracy 

rate, recall rate and F1 score are balanced and excellent in all categories, especially in 

the categories of “normal bones” and “soft tissue lesions”. 

Experiments show that ViT model can effectively capture complex structures and 

subtle differences in biomechanical images through global feature modeling and 

multi-head self-attention mechanism, and significantly improve recognition accuracy 

and robustness. This study provides a new method and technical support for the task 

of biomechanical image recognition, and an effective tool for clinical diagnosis, 

disease screening and surgical planning. 

6.2. Future work 

Although this research has made some progress, there are still some shortcomings 

and challenges in practical application. Future research will further deepen the 

following aspects: 

Although the Transformer architecture performs well in dealing with global 

information, its high computational complexity leads to long training time when 

dealing with large-scale image data, and its application in medical image processing 

may be limited. The future work will focus on the exploration of lightweight 

Transformer model. We plan to reduce the parameters and calculation burden of the 

model by model pruning, knowledge distillation and other technologies, while 

maintaining its good performance. In addition, considering the complexity of medical 

images, we will also introduce a hybrid architecture, combining Transformer with 

Convolutional Neural Network (CNN). CNN can effectively extract local features, 

while Transformer can carry out global modeling. This combination is expected to 

improve the reasoning speed and the accuracy of the model. 

The data set used in this study is small in scale and covers limited categories, 

which poses a certain challenge to the generalization ability of the model. Future work 

will introduce a larger set of biomechanical image data, aiming at covering more 

disease categories and more complex biomechanical features. This will help to 
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improve the generalization ability of the model and make it adapt to a wider range of 

clinical application scenarios. We plan to collect data from many hospitals and 

research institutions to ensure the diversity and representativeness of the data. At the 

same time, in order to avoid the influence of category imbalance on model training, 

technologies such as balanced sampling or weighted loss function will be adopted. 

With the development of 3D medical imaging technology, future research will 

explore the application of Transformer in 3D medical images (such as 3D CT and MRI 

data). We plan to develop a Transformer model for 3D structures, aiming at more 

accurate 3D anatomical recognition. Specifically, in the future, we will try to fuse the 

3D Convolution Network (3D CNN) and Transformer to capture the spatial 

relationship in the 3D structure. This challenge involves not only the design of model 

architecture, but also how to process huge 3D image data efficiently. 

In the medical field, the interpretability of deep learning model is very important, 

especially in clinical application, doctors and medical personnel need to understand 

the decision-making process of the model. In order to improve the interpretability of 

the model, future research will combine visualization techniques, such as Grad-CAM 

and Class Activation Mapping (CAM), to analyze the decision-making process of 

Transformer model in the process of biomechanical image recognition. This not only 

helps to improve the transparency of the model, but also helps doctors to understand 

the prediction basis of the model, thus improving the trust and acceptance of users. 

Biomechanical images are usually highly complementary to other types of data, 

and these multimodal data can provide more comprehensive patient information, thus 

improving the diagnostic accuracy. Future work will explore the application of 

Transformer in multimodal data fusion, and study how to effectively combine data 

from different sources (such as image data and clinical text data). We plan to use the 

multi-modal learning method in deep learning to input different types of data into a 

unified model framework, and further improve the applicability and diagnostic effect 

of the model in the actual clinical environment. 
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