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Abstract: In order to improve the resolution of infrared images of single-molecule 

reconstruction of composite materials, this paper proposes an image super-resolution 

reconstruction method based on deep machine learning SRGAN, By replacing the residual 

blocks of the generated network in SRGAN with residual dense block, it can more effectively 

acquire and utilize the image features from various network layers, especially those containing 

high-frequency information, thereby ensuring that more details and textures are preserved 

during the magnification of infrared images. The SE attention mechanism is incorporated into 

the generative network by assigning a weight to each channel, which strengthens the focus on 

important features while reducing reliance on irrelevant information. Super-resolution 

reconstruction experiments conducted on CFRP composite material infrared images 

demonstrate that the improved algorithm achieves a 0.6 increase in Peak Signal-to-Noise Ratio 

(PSNR) and a 0.3% increase in Structural Similarity Index (SSIM) compared to SRGAN, 

providing valuable references for the super-resolution reconstruction of infrared images of 

composite materials. 

Keywords: super resolution reconstruction; infrared image; molecule; composite material; 

deep learning 

1. Introduction 

Carbon Fiber Reinforced Polymer (CFRP) has been widely used in many fields 

[1–5]. However, during the material processing, defects such as cracks and inclusions 

can easily occur, which affect the material’s performance and safety. Timely detection 

of defects in composite materials is essential for maintaining their exceptional 

performance and ensuring safety. Given the intricate nature of composite structures, 

defects can significantly compromise their integrity and functionality. Early 

identification of these flaws not only safeguards against potential failures but also 

enhances the longevity and reliability of the materials. In this context, the application 

of single molecule techniques offers new insights into defect detection, potentially 

improving accuracy and efficiency in identifying issues [6–8]. Infrared imaging 

technology is highly effective in identifying concealed defects during the single-

molecule reconstruction of composite materials. This advanced technique leverages 

thermal signatures to reveal inconsistencies that may not be visible through 

conventional inspection methods. By providing detailed insights into the material’s 

internal structure, infrared imaging enhances the accuracy of defect detection, 

ensuring the integrity and reliability of composite components in various applications. 

This capability is particularly crucial in industries where performance and safety are 
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paramount, such as aerospace and automotive engineering [9–11]. However, the 

constraints imposed by shooting distance and the complexities of various 

environments significantly diminish the resolution of infrared images, hindering the 

precise identification of defects in composite materials [12]. To address these 

challenges, we leverage advanced deep learning image processing technology to 

optimize infrared imagery. This approach not only enhances the resolution of the 

images but also significantly improves the accuracy and efficiency of defect detection 

in composite materials. By ensuring higher quality and reliability, our method 

contributes to the overall integrity of the mat. 

Harris et al. [13] first proposed the concept of image super-resolution. With the 

development of the field of deep learning, the super-Resolution Convolutional Neural 

Networks (SRCNN) proposed by Dong et al. [14] has become a milestone in this field. 

Ledig et al. [15] proposed the Super-Resolution Generative Adversarial Network 

(SRGAN), which successfully combined the super-resolution reconstruction 

technology with the generative adversarial networks, achieving significant 

breakthroughs in the field of super-resolution reconstruction. Wu et al. [16] proposed 

an image super-resolution reconstruction algorithm based on lightweight and dense 

residual networks (I-SRGAN), which achieved good reconstruction results in 

experiments on ultra-resolution reconstruction of insulator infrared images in 

transmission lines. Liu et al. [17] proposed an infrared image super-resolution 

reconstruction algorithm that integrates residual dense and generative adversarial 

networks, which effectively improves the image quality. Hu et al. [18] proposed an 

efficient and low-cost super-resolution method for infrared images by combining 

generative adversarial networks with lightweight attention residual blocks, focusing 

on the reconstruction of detailed textures and the accurate extraction of pixel features. 

2. SRGAN 

SRGAN is a cutting-edge image super-resolution technology that harnesses the 

principles of generative adversarial networks (GANs). This innovative approach 

involves a dynamic interplay between two neural networks: the generator and the 

discriminator. 

The generator network is tasked with creating high-resolution images from their 

low-resolution counterparts, effectively enhancing the visual quality and detail. 

Meanwhile, the discriminator network plays a critical role by assessing the generated 

high-resolution images against authentic high-resolution images, thereby identifying 

discrepancies and guiding the generator towards improved accuracy. 

This adversarial learning process not only facilitates the transformation of low-

resolution images into high-resolution ones but also ensures that the generated outputs 

are as realistic and detailed as possible. The flowchart illustrating this process is 

depicted in Figure 1. 
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Figure 1. SRGAN flowchart. 

2.1. SRGAN network structure 

The network structure of SRGAN (Super-Resolution Generative Adversarial 

Network) mainly consists of two parts: the generator network and the discriminator 

network, as shown in Figures 2 and 3. 

 
Figure 2. Generator network structure. 

 
Figure 3. Discriminant network structure. 

The generator network is comprised of several residual blocks, which effectively 

mitigate issues related to gradient vanishing and training bottlenecks. In the final 

layers of the generator, upsampling is performed through subpixel convolution. This 

method is a highly efficient technique for upsampling, as it enhances the image 

resolution by reorganizing the spatial dimensions of the feature map. 
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The discriminator network is composed of multiple convolutional layers, each 

utilizing filters to convolve the input image and produce a corresponding feature map. 

Following these convolutional layers, one or more fully connected layers are typically 

employed to map the extracted features to the output space. The output space is usually 

a single dimension, which represents the probability that the input image is an 

authentic, real image. This architecture enables the discriminator to effectively 

distinguish between real and generated images, thereby enhancing the overall 

performance of the generative adversarial network. 

2.2. Loss function 

The loss function is mainly used to measure the degree of error between the 

model’s prediction results and the true results. Generally, the smaller the loss function, 

the better the prediction performance of the model. The loss function of SRGAN is 

important for generating the network, which includes both content loss and adversarial 

loss. The loss function formula of SRGAN is shown in Equation (1), which 𝑙𝐶𝑜𝑛𝑡𝑒𝑛𝑡
𝑆𝑅  

is the content loss, 𝑙𝐺𝑒𝑛
𝑆𝑅  is the confrontation loss. The loss function of SRGAN weights 

both the content loss and the confrontation loss by certain weights to balance the role 

of both in the training process. This design allows SRGAN to generate more realistic 

and rich super-resolution images while maintaining the similarity of the image content. 

𝑙𝑆𝑅 = 𝑙𝐶𝑜𝑛𝑡𝑒𝑛𝑡
𝑆𝑅 + 10−3𝑙𝐺𝑒𝑛

𝑆𝑅  (1) 

3. Improved SRGAN model 

SRGAN has the following shortcomings in infrared image reconstruction of 

composite materials: 

1) Due to the low resolution of the infrared image themselves, as well as the impact 

of infrared imaging devices and the environment, infrared images usually present 

low contrast, unclear target edges and other shortcomings. SRGAN algorithm 

may not be able to completely overcome these problems in the reconstruction 

process, resulting in the resolution of the reconstructed image is not high enough 

to meet the needs of some applications; 

2) SRGAN distributes the weights equally when processing the feature information, 

and the useless and useful feature information in the reconstructed infrared image 

is amplified equally, resulting in the reconstructed infrared image containing too 

much noise and interference information, which affects the detection and 

recognition performance of the later image. 

3) The shallow depth of SRGAN network structure limits its ability to extract 

complex feature information; In view of the above problems, we improve and 

optimize it. 

3.1. The residual module is replaced with the residual dense module 

The generation network of SRGAN comprises six residual blocks, which are 

crucial for image super-resolution algorithms as they aim to recover as much lost detail 

as possible when scaling small images to high resolution. To enhance this detail 

recovery further, the original residual network has been replaced with a residual dense 
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network. This modification leverages the capability of the residual dense network to 

more effectively capture and utilize image features across various network layers, 

particularly those rich in high-frequency information. As a result, this approach 

ensures that more details and textures are preserved during the image amplification 

process. Additionally, the integration of single molecule analysis techniques could 

provide deeper insights into the structural nuances of images, potentially improving 

the overall quality of the super-resolved outputs. 

Residual dense network [19] is a deep convolutional neural network structure 

with significant influence in the field of computer vision and deep learning. It 

combines the concepts of residual connection and dense connection, and aims to solve 

the problems such as gradient disappearance and feature sparsity during the traditional 

neural network training process, thus improving the model performance and 

convergence speed. In image super-resolution tasks, residual dense networks can learn 

richer image details and improve the quality and detail recovery ability of low-

resolution images. The structure of the residual-dense network is shown in Figure 4. 

 
Figure 4. The residual dense network. 

The improved generator network structure is shown in Figure 5. Through 

experimental verification, this method not only visually improves the quality of the 

image, but also significantly surpasses the traditional SRGAN method in objective 

evaluation indicators, proving the effectiveness and practicability of the improvement 

in improving the image quality. 

 
Figure 5. The improved generative network. 
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3.2. SENet attention mechanism 

When humans see an image, they first quickly scan the global image, and then 

focus on the area of interest. The design of the attention mechanism is inspired by the 

simulation of the human visual attention mechanism, which not only improves the 

network’s attention to important features, but also enhances the robustness of the 

network to noise and redundant information, thereby improving the performance of 

the model. Due to the single color and channel of infrared images of composite 

materials, the SENet attention mechanism is considered in this paper. 

The idea of SENet is very intuitive and effective. By introducing an attention 

mechanism at the level of the feature channel and assigning a weight to each channel, 

it enhances the attention to important features while reducing the dependence on 

useless information. The implementation of this mechanism is relatively simple, but it 

can significantly improve the model performance. It is widely welcomed and applied 

because of it’s ease to integrate into various existing convolutional neural network 

structures and can bring significant performance improvements without introducing 

excessive computational complexity. The working principle of SENet is shown in 

Figure 6. 

 
Figure 6. SENet working schematic. 

The implementation of SENet is mainly summarized in three steps. The first is 

Squeeze. Global Average Pooling (GAP) is performed on the input feature map (H × 

W × C) to output the feature map of 1 × 1 × C. The next step is to Excitation the feature 

map. where the compressed feature map is fed into a ReLU activation function, 

producing a vector of middle_channels. This vector then passes through a fully 

connected layer and a Sigmoid activation function, yielding a vector with the same 

number of channels as the input, where each value represents the weight for the 

corresponding channel. Finally, the channel weights obtained in the previous step are 

multiplied with the original feature map to obtain the feature map weighted by the 

attention mechanism. After the convolutional layer of SRGAN, an SE module can be 

added to assign weights to each feature channel and optimize the extracted content, 

thus improving the accuracy of the discriminant network. 

3.3. Remove the BN layer 

The introduction of batch normalization layer into the whole network usually 

helps to accelerate the training and convergence process, reduce the risk of gradient 

disappearance, and prevent overfitting to some extent. These advantages are fully 

verified in tasks such as image classification. However, the application of the BN layer 

in the image super-resolution task brings different challenges. Specifically, the BN 

layer tends to reduce absolute differences between data samples while highlighting 
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relative differences, which partly limits the ability of the model to generalize when 

dealing with training and test sets with large differences. Therefore, although the BN 

layer performs well in tasks such as image classification, its effect is not ideal in image 

super-resolution tasks. 

Rise to the challenge, we remove BN layers in the generative network. The BN 

layer needs to calculate the mean and the variance during the training process, and 

perform the normalization operation, and these steps all require additional 

computational resources. However, in the absence of the BN layer, the network can 

more directly learn the mapping relationship between input and output, and thus can 

more efficiently handle image super-resolution tasks. 

Therefore, in the image super-resolution task, removing the BN layer can not only 

improve the generalization ability and robustness of the model, but also help to reduce 

the computational cost and improve the overall performance. 

4. Experiments 

4.1. Environment 

This experiment was completed on the Window system, the hardware selection 

of TUF-RTX4080S-016G-GAMING graphics card, CPU I7-13700 KF, memory 32G 

× 2, the experiment using PyTorch framework, Anaconda3, python3.8. 

4.2. Datasets 

Composite thermal imaging dataset CFRP, examined by pulsed thermal imaging, 

is 300 mm × 300 mm × 2 mm, three carbon fiber reinforced plastics (CFRP) plates 

and three glass fiber reinforced plastics (GFRP) plates, each containing 25 inserts with 

a length/depth ratio between 1.7 and 75. Using two FX60 BALCAR photographic 

flashes (6.2 kJ per flash) generating thermal pulses (2 ms duration), a X6900 FLIR 

infrared camera using RerecchIR software to record thermal images and customize, 

we first converted the csv format files into infrared images, from which we selected 

12,000 experiments, 10,000 for the training set and 2000 for the test set. 

4.3. Parameters 

In the training process of the model in this paper, BatchSize is set to 32, and the 

initialized learning rate is le-4, after 100 iterations. Experiments were performed with 

a super-resolution reconstruction of a multiple of 4. Training was optimized using the 

Adam algorithm. 

4.4. Evaluation 

Both objective and subjective evaluation are important image quality evaluation 

methods in super-resolution reconstruction algorithms. Common and objective 

evaluation indicators include: 

Peak signal-to-noise ratio (PSNR) is a common measure of the level of image 

distortion or noise level. Higher values indicate better image quality. According to the 

numerical range of PSNR, we can have a general assessment of the reconstructed 

image quality: when PSNR has a value greater than 40 dB, this usually means that the 
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reconstructed image quality is very high. When the value of PSNR was between 30 

and 40 dB, this indicated good quality reconstructed images. 

Structural similarity index measurement (SSIM) takes into account the similarity 

of image structure and measures the similarity between two images based on 

brightness, contrast and structural information. The closer the SSIM value is to 1, the 

higher the image quality is. 

Subjective evaluation depends on the visual perception of the judge. In super-

resolution reconstruction, the Mean Opinion Score (MOS) is usually used for 

subjective evaluation. The MOS is obtained by averaging the scores given by a group 

of reviewers. The judges rated the reconstructed images based on their visual 

performance. The higher the MOS value, the better the quality of the reconstructed 

image is subjectively. 

4.5. Results 

In this paper, two indexes of peak signal-to-noise ratio (PSNR) and Structural 

Similarity Index (SSIM) are selected to compare and judge. At the same time, 

experiments are compared with algorithms such as Bic, SRCNN, ESPCNN, EDSR, 

SRGAN. The experimental results are shown in Table 1. 

Table 1. Comparison of experimental results of 4 x image reconstruction by 

different algorithms. 

model PSNR SSIM 

Bic 28.05 0.78 

SRCNN 31.78 0.81 

ESPCN 30.53 0.79 

EDSR 30.61 0.81 

SRGAN 34.36 09.8 

Ours 34.96 0.89 

As can be seen from the data in Table 1, algorithms based on convolutional 

neural networks, such as SRCNN and EDSR, have shown excellent performance in 

super-resolution reconstruction. These algorithms optimize the error value between 

the original high-resolution image and the super-resolution image generated by the 

generator, so that the PSNR value of the reconstructed image is higher than that of the 

traditional algorithm. Therefore, from the perspective of objective evaluation, the 

super-resolution reconstruction algorithm based on convolutional neural network 

performs better. The algorithm proposed in this paper is significantly superior to other 

algorithms in the two key indexes of peak signal-to-noise ratio (PSNR) and structural 

similarity index (SSIM). This means that the algorithm in this paper performs better 

in the quality of reconstructed images. 

Figure 7 shows the infrared images of composite materials reconstructed by 

different algorithms. Through observation, we can find that the traditional Bic 

algorithm is fuzzy when processing image edges and fails to fully retain details. 

SRGAN and EDSR algorithms surpass Bic in image reconstruction effect. In 

particular, the SRGAN algorithm not only generates images with higher clarity, but 
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also more closely resembles the original high-resolution images in texture and detail. 

Finally, the improved algorithm proposed in this paper realizes the further 

improvement of image quality. As can be seen from the figure, the image reconstructed 

by the improved SRGAN algorithm not only maintains texture and detail information, 

but also presents a better overall visual effect. 

 

Figure 7. Images reconstructed by the different algorithms. 

5. Ablation 

In order to verify the enhancement effect of RDN residual-dense network and 

SENet attention on network training proposed in this paper, ablation experiments are 

conducted here. Initially, only the generator of the original SRGAN is improved, RDN 

is replaced by RN network for training; Then, SENet attention mechanism was added 

into the generation network for training, and the training results are shown in Table 2. 

Table 2. Comparison of the results of the ablation experiments. 

model PSNR SSIM 

SRGAN 34.363 0.894 

SRGAN (residue-dense) 34.913 0.895 

SRGAN (Residual-dense + SElayer) 34.967 0.897 

As can be seen from Table 2, after replacing RN with RDN in SRGAN, PSNR 

has been significantly improved. Compared with before, PSNR has been increased by 

0.55 and SSIM by 0.001. After adding SENet, the increase in PSNR was 0.604 and 

the increase in SSIM was 0.003. 

6. Conclusion 

In this paper, we present an enhanced SRGAN method that significantly elevates 

the quality of infrared image reconstruction. By optimizing the SRGAN framework, 

we incorporate residual-dense blocks in place of traditional residual blocks. This 

strategic modification enables the model to extract more comprehensive information 

across multiple feature layers, resulting in sharper textures and finer details in the 

reconstructed images. 

Additionally, we introduce the Squeeze-and-Excitation (SE) attention 

mechanism, which further refines the model’s ability to focus on relevant features, 

enhancing its performance. Our approach also integrates deep machine learning 

techniques, allowing for more sophisticated analysis and processing of image data. 

Furthermore, the application of single molecule analysis could provide additional 

insights into the structural nuances of the images. 



Molecular & Cellular Biomechanics 2025, 22(2), 1169.  

10 

Experimental validation demonstrates that our improved SRGAN achieves 

notable advancements in infrared image reconstruction tasks. Specifically, PSNR) 

index shows an improvement of 3.18 over the SRCNN method and 0.6 over the 

original SRGAN. Similarly, in terms of the Structural Similarity Index (SSIM), our 

method outperforms others with a gain of 0.08 compared to SRCNN and 0.003 

compared to SRGAN. 

Beyond these objective quantitative metrics, our method excels in subjective 

visual assessments. The reconstructed images exhibit superior structural similarity, 

enhanced edge sharpness, optimal overall brightness, and improved smoothness 

compared to competing algorithms. This advancement holds significant engineering 

value for the post-processing of extensive infrared image datasets, particularly in 

practical applications such as defect detection in composite materials. 

In summary, by integrating residual-dense blocks, the SE attention mechanism, 

and deep machine learning techniques, we have successfully enhanced the SRGAN 

architecture, leading to a marked improvement in the quality of infrared image 

reconstruction. This work provides robust technical support for ongoing research and 

practical applications in related fields. 
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