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Abstract: In response to the problems of insufficient accuracy, slow speed, and poor 

stability in the current parameter identification process of photovoltaic cells, this study 

designs a parameter identification method based on Improved Red-tailed Hawk (IRTH) 

algorithm optimization. Firstly, four photovoltaic cell models and one photovoltaic module 

model are constructed, and corresponding objective functions are established. Secondly, 

combining Gaussian mutation and cuckoo search ideas, a Gaussian cuckoo mutation 

mechanism is proposed to reprocess positional information, thereby optimizing the 

algorithm population and improving solving efficiency. And further analogize photovoltaic 

cell units as biomaterial units with specific mechanical response characteristics. By 

studying its current voltage characteristics, the dynamic response of its photoelectric 

conversion unit under different lighting and load conditions is revealed, similar to the 

nonlinear and time-dependent characteristics exhibited by biomaterials under external 

forces. Again, based on the idea of individual extinction in the white whale algorithm, a 

red-tailed hawk descent mechanism is proposed to improve the convergence speed.  The 

results of the effectiveness test on the proposed IRTH algorithm showed that it converged 

the fastest and obtained significantly smaller root mean square errors than other 

optimization algorithms. Finally, the IRTH was further utilized to parameter identification 

in RTC France photovoltaic cells and photovoltaic modules Photowatt-PWP 201, with an 

average improvement rate of 79.94%. Therefore, the improved algorithm has better 

parameter identification effect and higher reliability.  

Keywords: photovoltaic cell parameter identification; improved red-tailed hawk algorithm; 

tangent flight 

1. Introduction 

Under the “dual carbon” goal, photovoltaic power generation has been greatly 

promoted [1]. The rapid growth of Photovoltaic Power Generation (PPG) has put 

forward higher requirements for accurate modeling of the system. In the model of PPG 

system, accurate identification of parameters is the key to improving system 

performance and enhancing fault detection capability [2]. The main methods for 

Parameter Identification (PI) include solving, deterministic methods, and Meta-

Heuristic Algorithms (MHA). The solving method only relies on certain key points on 

the I-V curve to establish a mathematical model, so its identification accuracy is 

relatively limited. Deterministic methods, such as the least squares method [3], 

although able to provide higher accuracy results, may easily lead to premature 

convergence. Since its high feasibility and fast convergence velocity, MHA can 

simultaneously compensate for the shortcomings of both methods. Therefore, MHA 
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has been widely used in PI. 

Reference [4] proposed an enhanced grey wolf optimizer based on fusion strategy 

for photovoltaic model identification. This method dynamically adjusted the position 

update to find a better layout solution on a global scale. Reference [5] introduced the 

Pelican algorithm simulation for PI. This algorithm had higher accuracy than the above 

algorithms, however, it still needed further improvement in convergence speed, 

identification accuracy, and other aspects. Reference [6] introduced Levy flight and 

local search mechanisms, but there was still a problem of low identification accuracy. 

Reference [7] used the chaotic seagull optimization algorithm and probabilistic chaos 

strategy to improve convergence speed, but there was still room for improvement in 

identification accuracy. Recently, scholars have proposed a new MHA—Red-tailed 

Hawk (RTH) algorithm [8]. Through experimental analysis, it has been confirmed that 

the RTH algorithm performs greater than the other 26 MHAs in the vast majority of 

cases. Reference [9] utilized the RTH optimization algorithm for parameter 

classification and identification of natural language. However, the identification 

results obtained were only slightly better than other algorithms. The main reason is 

that the Levy flight search efficiency of the RTH is low, and it is prone to Fall into 

Local Optima (FILO), resulting in insufficient convergence speed and identification 

accuracy. 

In summary, although the MHA mentioned above has some applications in 

system PI, there are still problems with poor identification performance and the 

tendency to FILO. Hence, this article designs an Improved Red-tailed Hawk (IRTH) 

algorithm for PI of photovoltaic cells. Firstly, the Gaussian Cuckoo Mutation 

Mechanism (GCMM) is introduced during the population initialization phase to 

increase population diversity. Secondly, a tangent flight strategy is introduced during 

the predation stage to optimize the step size factor and avoid the algorithm being FILO. 

Moreover, the study analogizes the photoelectric conversion unit to a biomaterial unit 

with specific mechanical response characteristics. The current voltage response 

characteristics of photovoltaic cells are highly similar to the mechanical response 

characteristics of biomaterials under external forces. Biomaterials typically exhibit 

complex nonlinear and time-dependent behavior under external forces, and their 

properties dynamically adjust with changes in external conditions; Similarly, the 

internal structure and physical characteristics of photovoltaic units also result in 

different current voltage responses under different lighting and load conditions. 

Through this analogy, we can gain a deeper understanding of the dynamic working 

mechanism of photovoltaic units, optimize their photoelectric conversion efficiency, 

and provide new ideas for the design and performance improvement of photovoltaic 

modules. Finally, based on the concept of the white whale algorithm, a RTH descent 

mechanism is proposed for position update to improve the convergence velocity of the 

algorithm. Experiments have shown that compared to other MHAs, the IRTH 

algorithm exhibits greater advantages in convergence speed, identification accuracy, 

and reliability. 

2. Photovoltaic cell model 

It is crucial to construct an accurate Equivalent Circuit (EqC) model for 
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photovoltaic cells [10]. Reference [11] has modeled the Single Diode Model (SDM) 

and the Double Diode Model (DDM). On this basis, this article further establishes 

Three Diode Models (TDM), Four Diode Models (FDM), as well as mathematical 

models and corresponding objective functions for photovoltaic modules. In the study 

of photovoltaic cell models, they can be regarded as biomaterial units with specific 

mechanical response characteristics [12]. Just as biomaterials exhibit different 

deformation characteristics under external forces, the current and voltage responses of 

photovoltaic cells also vary due to differences in internal structure and physical 

properties under the influence of light and load conditions [13]. Therefore, through in-

depth analysis of the current voltage characteristics of photovoltaic cells, not only can 

the efficiency of their photoelectric conversion be grasped, but also their working 

mechanism can be better understood, which is crucial for optimizing design and 

improving performance. 

2.1. SDM model 

SDM is widely used in practical engineering, and its mathematical model 

expression is: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠𝑑 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
  (1) 

In the formula, 𝐼𝑝𝑣  and 𝑈𝑝𝑣  are the current and voltage output by the 

photovoltaic cell. 𝐼𝑝ℎ means the photocurrent. 𝐼𝑠𝑑 is the reverse saturation current 

of the photovoltaic tube. 𝑞 is the amount of electronic charge. 𝐴 is the constant 

factor of the diode. 𝐾 is the Boltzmann constant. 𝑇 is the operating temperature of 

the photovoltaic cell. 𝑅𝑠𝑒  is a series resistor. 𝑅𝑠ℎ  is a parallel resistor. The 5 

parameters that need to be recognized are 𝐼𝑝𝑣, 𝐼𝑠𝑑, 𝐴, 𝑅𝑠𝑒, and 𝑅𝑠ℎ. 

2.2. DDM 

DDM has the impact of composite current and provides a more accurate physical 

description of the battery. The mathematical formula for DDM is: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1} − 𝐼𝑠𝑑2 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
  (2) 

The 7 parameters that need to be recognized are 𝐼𝑝𝑣, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐴1, 𝐴2, 𝑅𝑠𝑒, 

and 𝑅𝑠ℎ.  

2.3. TDM 

This article models TDM. This model takes into account the influence of leakage 

current. The basic region of a solar photovoltaic cell has a series resistance, described 

by the resistance of the semiconductor to the substrate. The TDM is given by Equation 

(3): 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1} − 𝐼𝑠𝑑2 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1} − 𝐼𝑠𝑑3 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴3𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
  (3) 

The 9 parameters that need to be identified are 𝐼𝑝𝑣, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐼𝑠𝑑3, 𝐴1, 𝐴2, 

𝐴3, 𝑅𝑠𝑒, and 𝑅𝑠ℎ. 
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2.4. FDM model 

In contrast, the FDM model has the advantages of higher battery accuracy, 

minimal error between experimental and calculated data, and higher curve fitting 

accuracy. The EqC for modeling FDM is displayed in Figure 1. The expression for 

FDM is: 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1} − 𝐼𝑠𝑑2 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1} − 𝐼𝑠𝑑3 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴3𝐾𝑇
] − 1} −

𝐼𝑠𝑑4 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴4𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
  

(4) 

The 11 parameters that require to be identified are 𝐼𝑝𝑣, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐼𝑠𝑑3, 𝐼𝑠𝑑4, 

𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝑅𝑠𝑒, and 𝑅𝑠ℎ. 

 

Figure 1. FDM equivalent circuit diagram. 

2.5. Photovoltaic module model 

Comparing photovoltaic modules to a system composed of multiple biomaterial 

units with specific mechanical response characteristics can provide a deeper 

understanding of their overall performance. In nature, different types of biological 

materials combine to form powerful structural systems not only at the macroscopic 

level, but also exhibit unique mechanical properties at the microscopic level [14,15]. 

The interaction between these biomaterials exhibits a synergistic effect, allowing them 

to flexibly adjust their own response in the face of various external stresses, thereby 

enhancing overall performance. Similarly, the design of photovoltaic modules also 

follows this principle, maximizing the unique advantages of each unit and optimizing 

the photoelectric conversion process through the series and parallel connection of 

battery cells [16]. This structural integration enables photovoltaic modules to exhibit 

flexible response capabilities under changing lighting environments and load 

conditions, thereby significantly improving overall output capability. Just as 

biomaterials have the ability to adapt to different external forces, the design concept 

of photovoltaic modules provides a new way of thinking for achieving efficient energy 

conversion [17]. This analogy not only emphasizes the similarity in design and 

performance between photovoltaic modules and biomaterials, but also highlights their 

adaptability in dynamic environments, enabling research to further deepen the 

understanding of photovoltaic conversion units from the perspective of biomaterials 

and explore their potential advantages in practical applications. The EqC for modeling 

it is shown in Figure 2. The photovoltaic module model is given by Equation (5): 
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𝐼𝑝𝑣 = 𝐼𝑝ℎ𝑁𝑝 − 𝐼𝑠𝑑𝑁𝑝 {𝑒𝑥𝑝 [(𝐼𝑝𝑣𝑅𝑠𝑒 (
𝑁𝑠

𝑁𝑝
) + 𝑈𝑝𝑣) /𝐴𝑁𝑠𝑉𝑇] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒(𝑁𝑠/𝑁𝑝)+𝑈𝑝𝑣

𝑅𝑠ℎ(𝑁𝑠/𝑁𝑝)
  (5) 

𝑁𝑠  means 𝑁𝑠  photovoltaic cells in series. 𝑁𝑝  represents 𝑁𝑝  photovoltaic 

cells in parallel. There are 5 parameters that require to be recognized, namely 𝐼𝑝𝑣, 𝐼𝑠𝑑, 

𝐴, 𝑅𝑠𝑒, and 𝑅𝑠ℎ. 

 

Figure 2. PMM equivalent circuit diagram. 

2.6. Establishment of objective function 

In the process of establishing the objective function, the study compares the 

mechanical response characteristics of photoelectric conversion units to biological 

materials under different loading conditions. Biomaterials typically exhibit complex 

nonlinear and time-dependent responses, and their performance dynamically adjusts 

with changes in external conditions. Similarly, the optimization process of the 

photoelectric conversion unit also needs to fully consider its current and voltage 

response characteristics under different working states [18,19]. By constructing a 

reasonable objective function, researchers can ensure that photovoltaic cells can still 

operate at their optimal state under varying lighting conditions and load influences, 

thereby effectively improving their photoelectric conversion efficiency. The core goal 

of photovoltaic cell parameter identification is to accurately determine a set of optimal 

identification parameter values from actual measured voltage and current data [20]. 

This process is similar to the evolution of mechanical properties of biomaterials under 

long-term stress. By optimizing parameters, the simulated values can approach the 

actual values to the greatest extent possible, reducing the error between the two. Just 

as biomaterials self-regulate to adapt to external conditions in different environments, 

photoelectric conversion units also need to demonstrate sensitivity and adaptability to 

environmental changes in parameter identification. To achieve the goal of ensuring 

that simulated values can approach actual values to the greatest extent possible, this 

paper takes root mean square error as the main performance indicator, as shown in 

Equation (6). Through this method, the PI process is transformed into a problem of 

finding the optimal value of algorithm error within a specific range, aiming to optimize 

the prediction accuracy. 
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𝛿𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑓(𝑈𝑖,𝑝𝑣 , 𝐼𝑖,𝑝𝑣 , 𝑥𝑖)

2𝑛
𝑖=1

  (6) 

𝑛 is the number of tests. 𝑓(𝑈𝑖,𝑝𝑣 , 𝐼𝑖,𝑝𝑣, 𝑥𝑖)
2
 represents the objective function of each 

component. 𝑥𝑖 is the solution vector of the parameter to be identified. 

SDM model objective function and solution vector: 

{
𝑓(𝑈𝑝𝑣 , 𝐼𝑝𝑣 , 𝑥) = 𝐼𝑝ℎ − 𝐼𝑠𝑑 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
− 𝐼𝑝𝑣

𝑥 = [𝐼𝑝ℎ , 𝐼𝑠𝑑 , 𝐴, 𝑅𝑠𝑒 , 𝑅𝑠ℎ]
  (7) 

DDM objective function and solution vector: 

{
 
 

 
 𝑓(𝑈𝑝𝑣 , 𝐼𝑝𝑣, 𝑥) = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1}

−𝐼𝑠𝑑2 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
− 𝐼𝑝𝑣

𝑥 = [𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐴1, 𝐴2, 𝑅𝑠𝑒 , 𝑅𝑠ℎ]

  (8) 

TDM objective function and solution vector: 

{
  
 

  
 𝑓(𝑈𝑝𝑣 , 𝐼𝑝𝑣, 𝑥) = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1}

                        −𝐼𝑠𝑑2 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1} 

                        −𝐼𝑠𝑑3 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴3𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
− 𝐼𝑝𝑣

𝑥 = [𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐼𝑠𝑑3, 𝐴1, 𝐴2, 𝐴3, 𝑅𝑠𝑒 , 𝑅𝑠ℎ]

  (9) 

FDM objective function and solution vector: 

{
 
 
 
 

 
 
 
 𝑓(𝑈𝑝𝑣 , 𝐼𝑝𝑣, 𝑥) = 𝐼𝑝ℎ − 𝐼𝑠𝑑1 {𝑒𝑥𝑝 [

𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴1𝐾𝑇
] − 1}

                                       −𝐼𝑠𝑑2 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴2𝐾𝑇
] − 1}

                                       −𝐼𝑠𝑑3 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴3𝐾𝑇
] − 1}

                                       −𝐼𝑠𝑑4 {𝑒𝑥𝑝 [
𝑞(𝐼𝑝𝑣𝑅𝑠𝑒+𝑈𝑝𝑣)

𝐴4𝐾𝑇
] − 1} −

𝐼𝑝𝑣𝑅𝑠𝑒

𝑅𝑠ℎ
− 𝐼𝑝𝑣

𝑥 = [𝐼𝑝ℎ, 𝐼𝑠𝑑1, 𝐼𝑠𝑑2, 𝐼𝑠𝑑3, 𝐼𝑠𝑑4, 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝑅𝑠𝑒 , 𝑅𝑠ℎ]

  (10) 

Objective function and solution vector of photovoltaic module model: 

{
 
 

 
 𝑓(𝑈𝑝𝑣 , 𝐼𝑝𝑣, 𝑥) = 𝐼𝑝ℎ𝑁𝑝 − 𝐼𝑠𝑑𝑁𝑝 {𝑒𝑥𝑝 [(𝐼𝑝𝑣𝑅𝑠𝑒 (

𝑁𝑠

𝑁𝑝
) + 𝑈𝑝𝑣) /𝐴𝑁𝑠𝑉𝑇] − 1}

                                −
𝐼𝑝𝑣𝑅𝑠𝑒(𝑁𝑠/𝑁𝑝)+𝑈𝑝𝑣

𝑅𝑠ℎ(𝑁𝑠/𝑁𝑝)
− 𝐼𝑝𝑣 

𝑥 = [𝐼𝑝ℎ, 𝐼𝑠𝑑 , 𝐴, 𝑅𝑠𝑒 , 𝑅𝑠ℎ]

  (11) 

3. RTH optimization algorithm 

This article uses the IRTH algorithm to minimize the objective function and 
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identify the optimal parameter combination for the photovoltaic cell model. 

3.1. Standard RTH optimization algorithm 

Seydali Ferahtia proposed a novel nature inspired MHA called RTH algorithm in 

2023 [21]. As a predator, RTH has 3 stages in the hunting, namely, high-altitude 

soaring, low-level hovering, and diving hunting. During the high-altitude soaring 

phase, RTH looks for the search space and decides the range where prey is located. 

During the low altitude hovering phase, the RTH moves within a chosen area around 

the prey to select the optimal hunting location. Finally, RTH performs a red-tail swing 

and hits the target during the diving predation phase. This algorithm simulates the 

hunting method of RTH to solve optimization problems in the real world. 

3.1.1. Soaring high in the sky 

RTH flies into the sky, searching for the best position for food supply. Equation 

(12) represents formula for this stage: 

𝑋(𝑡) = 𝑋𝑏𝑒𝑠𝑡 + (𝑋𝑚𝑒𝑎𝑛 − 𝑋(𝑡 − 1)) × 𝐿𝑒𝑣𝑦(𝑑) × 𝑇𝐹(𝑡) (12) 

𝑋(𝑡) is the position of RTH at 𝑡. 𝑡 is the number of iterations. 𝑋𝑏𝑒𝑠𝑡 means the best 

position obtained. 𝑋𝑚𝑒𝑎𝑛 is the mean of the position. 𝐿𝑒𝑣𝑦(𝑑) is the d-dimensional 

Levy flight formula. 𝑇𝐹(𝑡) is a transition factor function that can be calculated based 

on the equation. 

TF(t)=1+sin(2.5+ (
𝑡

𝑇𝑚𝑎𝑥
))  (13) 

𝑇𝑚𝑎𝑥 means the maximum iterations. 

3.1.2. Low altitude hovering 

After choosing the target location in the previous stage, RTH will hover and fly 

low around the prey. This movement enables it to investigate the optimal position and 

chance to hit the objective, and deliver a fatal blow to the prey. Its mathematical model 

is: 

𝑋(𝑡) = 𝑋𝑏𝑒𝑠𝑡 + (𝑥(𝑡) + 𝑦(𝑡)) × 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡)  

𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡) = 𝑋(𝑡) − 𝑋𝑚𝑒𝑎𝑛 
(14) 

𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡) indicates the algorithm step size. 

3.1.3. Diving prey stage 

In this stage, RTH suddenly bends down and attacks prey from the optimal 

position and timing selected in the previous step during low altitude flight. This stage 

is very rapid, and its expression is: 

𝑋(𝑡) = 𝑎(𝑡) × 𝑋𝑏𝑒𝑠𝑡 + 𝑥(𝑡) × 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1(𝑡) + 𝑦(𝑡) × 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2(𝑡)  (15) 

𝑎(𝑡) is the acceleration coefficient. 

3.2. The improved algorithm 

3.2.1. The mutation mechanism of gaussian cuckoo bird 

To lift the diversity of the algorithm population and lift the convergence velocity, 
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this study proposes a new mutation mechanism—GCMM—by combining Gaussian 

Mutation (GM) and Cuckoo Search (CS) in the initialization population stage of the 

RTH algorithm. 

(1) Gaussian mutation 

GM uses random numbers that follow a normal distribution to act on the previous 

location vector, generating new positions and ensuring that mutation activity occurs 

within a controllable and focused area, resulting in superior results [22]. The GM 

density formula is: 

𝑓(𝑥) =
1

√2𝜋𝜎
𝑒𝑥𝑝 (−

(𝑥−𝜇)2

2𝜎2
)  (16) 

𝜇  denotes the mean or expected value of the distribution. σ means the standard 

deviation. 𝜇 and σ are 0 and 1. The position difference and Gaussian Distribution 

(GD) operator are applied to design a unique GM operator. The specific expression of 

this operator is: 

𝑂 = 𝐺(𝜉) × (𝑋𝑟𝑎𝑛𝑑1
𝐷 − 𝑋𝑟𝑎𝑛𝑑2

𝐷 )  (17) 

𝐺(𝜉) is a GD shaped by the probability density in Equation (16), where ξ∈[0, 1]. X
D 

rand1 and X
D 

rand2 are the position of two randomly chosen eagles in the population. 

(2) Cuckoo search 

CS is a MHA that simulates the parasitic brooding and movement behaviors of 

cuckoo [23]. The Position Vector (PV) of dimensional data can be randomly mutated 

through parasitic strategies. The mutated PV keeps the superior features of the 

previous position. The judgment is expressed as follows: 

𝑘 = 𝐽𝑢𝑑𝑔𝑒𝐷 > 𝜃  (18) 

JudgeD is a D-dimensional random array. θ is an operator that determines whether to 

discard the present bird’s nest. k refers to the result of comparing each JudgeD 

dimension with θ, used to determine which data dimension to mutate. The scheme for 

random movement of cuckoos is: 

𝐶 = 𝑘 × 𝐿𝑒𝑣𝑦(𝑑) (19) 

C corresponds to the CS operator, and k decides which vector dimension needs to 

undergo a mutation. 

(3) Gaussian cuckoo mutation synthesis 

A new mutation mechanism, GCMM, is synthesized using GM and CS ideas and 

introduced into the original RTH algorithm. GM uses normally distributed random 

numbers to perturb the position vectors of individuals to generate new positions, 

ensuring that the mutation activity takes place in a controlled and concentrated area to 

produce superior results [24]. CS simulates the parasitic breeding behaviour of 

cuckoos by mutating the PVs of the dimensional data through a stochastic strategy that 

maintains the superior characteristics of the previous position [25]. The specific steps 

are: 

The first step is to initialize the population, including the size N of the population 

and the iteration T, etc; 

The second step is to randomly select two search agents from the population after 
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RTH is executed normally, and based on the above two mechanisms, cause a mutation 

in the differences between the two agents; 

The next step is to add the current search position and gain a novel PV; 

The final step is comparing the old and new PVs and maintain a good PV. The 

calculation is: 

𝑋𝑛𝑒𝑤 = 𝑋𝑟𝑎𝑤 + 𝑂 × 𝐶 

𝑋(𝑡 + 1) = {
𝑋𝑛𝑒𝑤    𝑖𝑓  𝐹(𝑋𝑛𝑒𝑤) < 𝐹(𝑋𝑟𝑎𝑤)
𝑋𝑟𝑎𝑤         𝑒𝑙𝑠𝑒    

} 
(20) 

Xraw denotes the search outcomes of the conventional RTH. Xnew is the novel position 

after mutation. F(Xraw) and F(Xnew) are their fitness functions. O is the GM operator 

mentioned above, each operator containing d dimensions. C is the CS operator. 

Overall, utilizing this mechanism to reprocess location information not only 

increases population diversity but also improves solving efficiency. The optimized 

algorithm does not make the previous algorithm’s framework more complex. 

3.2.2. Tangent flight 

The Levy flight used in the original RTH algorithm is a unique random walk 

model used to characterize movement patterns with long tail distribution 

characteristics. In terms of PI of photovoltaic cells, Levy’s flight process has low 

search efficiency and is prone to being FILO. 

Figure 3 is a random walk graph of Levy flight simulated 1000 times. The 

multiple iterations at the initial point (0, 0) of the wandering coordinates show that the 

algorithm’s search range is limited to a small area in the early stages of iteration, and 

cannot effectively cover potential important areas. In addition, the high degree of 

randomness and narrow step size range also result in repeated searches of the already 

searched area, leading to local optima. 

 

Figure 3. Levy flight random walk diagram. 

When the iteration reaches its end (as shown in the left half of Figure 3), although 

the narrow step interval still limits the range of stride changes, the search span at this 

time is significantly larger than at the beginning of the iteration, leading to the problem 

of excessive search distance. This “small first, big later” search pattern may not only 

reduce search efficiency, but also cause the algorithm to miss the optimum, ultimately 
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leading to the search process being FILO. 

Therefore, in response to the characteristic of Levy flight, to avoid the RTH being 

FILO during the dive hunting phase and improve the convergence speed, a Tangent 

Search Algorithm (TSA) is introduced during the dive hunting phase of RTH [26]. 

TSA is introduced in the predation phase of the RTH algorithm, using a tangent 

function based model to guide the current solution in a more optimal direction. The 

properties of the tangent function are used to combine global and local search to 

optimise the step size and improve the search efficiency and accuracy of the algorithm. 

It adopts a model built on tangent functions to guide the current solution to a more 

optimum. The specific implementation steps are as follows: 

The given optimization algorithm position update formula: 

𝑋𝑡+1 = 𝑋𝑡 + 𝑠𝑡𝑒𝑝 × 𝑤 (21) 

The 𝑠𝑡𝑒𝑝 is the algorithm stride. 𝑤 is the direction of movement. 

Due to the crucial role of step size in algorithm optimization, a larger step size 

aids to explore a wider solution space, while a smaller one facilitates finer search. This 

article introduces the tangent function to obtain a search equation that combines global 

and local walks, as calculated in Equation (22): 

𝑋𝑡+1 = 𝑋𝑡 + 𝑠𝑡𝑒𝑝 × 𝑡𝑎𝑛(𝜃) (22) 

Note: 𝑠𝑡𝑒𝑝 is represented by 𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒(𝑡) in this article. 

Finally, the expression for the optimal position after introducing tangent flight 

can be further obtained: 

𝑋(𝑡) = 𝑎(𝑡) × 𝑋𝑏𝑒𝑠𝑡 + 𝑥(𝑡)𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1(𝑡) 𝑡𝑎𝑛(𝜃) + 𝑦(𝑡)𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2(𝑡) 𝑡𝑎𝑛(𝜃) (23) 

𝑎(𝑡) is the acceleration coefficient. 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒1(𝑡) = 𝑋(𝑡) − 𝑇𝐹(𝑡) × 𝑋𝑚𝑒𝑎𝑛 

𝑆𝑡𝑒𝑝𝑠𝑖𝑧𝑒2(𝑡) = 𝐺(𝑡)𝑋(𝑡) − 𝑇𝐹(𝑡) × 𝑋𝑏𝑒𝑠𝑡 
(24) 

𝐺(𝑡) is the gravity effect, which is used to reduce excessive search space. 

In addition, the values of 𝑎(𝑡) and 𝐺(𝑡) can be simplified as follows: 

𝑎(𝑡) = 𝑠𝑖𝑛2 (2.5 −
𝑡

𝑇𝑚𝑎𝑥
)  (25) 

As 𝑎(𝑡) is a monotonically increasing function, the acceleration of RTH grows 

with the iterations, thereby improving the convergence speed. 

𝐺(𝑡) = 2 × (1 −
𝑡

𝑇𝑚𝑎𝑥
)  (26) 

Due to 𝐺(𝑡) being a monotonically decreasing function, the gravity effect of 

RTH decreases with increasing iteration times, thereby also improving convergence 

speed. 
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Figure 4. Tangential flight random walk diagram. 

Figure 4 shows a tangent flight random walk graph. Compared to Figure 3, at 

point (0, 0), tangent flight does not waste time on small-scale repeated random 

exploration. The more complex parts in the figure (such as the majority) are clearly 

simpler than Levy’s flight trajectory, overcoming the problem of low search efficiency 

caused by Levy’s high randomness in flight. In addition, compared to the coordinate 

dimensions in the figure, the search distance of tangent flight is farther than that of 

Levy flight, thus overcoming the problem of Levy flight having a too small search 

distance. When the tangent flight iteration reaches its end (as shown in the right half 

of Figure 4), the search distance decreases significantly compared to the initial stage 

of the iteration, forming a “large first, then small” search pattern. This improves search 

accuracy and solves the problem of Levy’s long search distance in the later stages of 

flight. By introducing TSA, the algorithm can avoid being FILO, allowing for a wider 

range of searches and providing more opportunities for RTH to hunt, thereby 

improving the identification accuracy of the algorithm. 

In summary, by introducing tangent flight instead of Levy flight in the IRTH 

algorithm to optimize the step size factor of the algorithm’s predation stage, the 

shortcomings of Levy flight search distance being too large or too small are 

compensated for, and the convergence speed and identification accuracy are 

accelerated. 

3.2.3. RTH falling mechanism 

To optimize the objective function results and improve the overall performance, 

the paper constructs an RTH falling mechanism. The probability of RTH falling from 

individuals in the population is selected as a subjective hypothesis. By establishing an 

RTH falling mechanism, the optimal results of previous iterations are sorted. By 

utilizing the probability of RTH falling for position update, the convergence speed is 

improved. The construction process of the mechanism is: 

Firstly, based on the migration and foraging process of white whales in the white 

whale algorithm [15], the following RTH descent mechanism is constructed to achieve 

adaptive parameter adjustment of the step size factor. 

𝑃𝑓 = 𝑃𝑑 −
𝑃𝑙𝑇

𝑇𝑚𝑎𝑥
  (27) 

Pf is the probability of RTH falling, and in the objective law of survival at the initial 
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moment of RTH, the probability of RTH falling is about 0.1. Pd is the initial probability 

of RTH falling. Pl is the final probability of RTH falling. T is the current iteration count. 

 

Figure 5. Visual spatial analysis diagram of falling mechanism. 

The probability of RTH falling mentioned above, Pf, is 0.1. By visualizing the 

spatial color gamut analysis of the falling mechanism is shown in Figure 5, the value 

of Pd can be obtained as 0.1, which is used as a subjective assumption to simulate 

small changes in the population. The value of Pl is selected as 0.05, from which the 

final probability of RTH falling can be obtained. This probability describes the degree 

of risk of RTH approaching the food source during the optimization process. 

When the RTH is transferred to another location or shot down, its position and 

the step size of its fall are utilized to determine the updated position: 

𝑋𝑠𝑡𝑒𝑝 = (𝑢𝑏 − 𝑙𝑏) 𝑒𝑥𝑝 (−𝐶2 ×
𝑇

𝑇𝑚𝑎𝑥
)  (28) 

C2 is the step size factor related to the probability of RTH fall and population size, and 

ub and lb are the upper and lower bounds of the variable Xstep. 

𝐶2=2𝑃𝑓 × 𝑛  (29) 

The n is the population size. 

𝑋𝑖
𝑡+1 = 𝑟1𝑋𝑖

𝑡 − 𝑟2𝑋𝑟
𝑡 + 𝑟3𝑋𝑠𝑡𝑒𝑝  (30) 

r1, r2, and r3 are random numbers between (0, 1). Xi is the position of the i-th RTH. Xr 

is the current position of the r-th RTH. Meanwhile, the study introduces adaptive 

mechanisms to dynamically adjust the use of optimisation strategies to reduce the 

computational overhead of the algorithms in systems with limited computational 

resources. The core idea of the adaptive mechanism is to decide whether to activate a 

specific optimisation mechanism based on the complexity of the problem and the 

current search state. First, the problem complexity is assessed, which is achieved by 

analysing the dimensionality of the objective function, the size of the search space and 

the historical optimisation difficulty of the problem. Second, the current search state 

is monitored, including population diversity, the quality of the current best solution, 

and the speed of search progress. In each iteration of the algorithm, based on the 

current search state and problem complexity, the adaptive mechanism will 
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dynamically adjust the weights or parameters of the above optimisation mechanisms. 

For example, at the beginning of the search, the weight of the Gaussian cuckoo 

mutation is increased to increase the population diversity; while at the approach of 

convergence, the weight of the RTH descent mechanism is increased to accelerate the 

convergence speed. 

In summary, by establishing an RTH drop mechanism, it is possible to rank the 

optimal results of previous iterations and use the RTH drop mechanism for position 

updates, thereby lifting the convergence velocity. Figure 6 shows the flowchart of the 

improved RTH. The IRTH algorithm firstly randomly initialises the location of a flock 

of eagles in the search space and evaluates the fitness of each eagle using an objective 

function. Secondly, GCMM is applied to increase the population diversity and the 

iterative step size of the algorithm is optimised using TSA without avoiding local last. 

On this basis, RTHFM is used to improve the convergence speed of the algorithm and 

the descent strategy is dynamically adjusted by an adaptive mechanism. When the 

stopping condition is satisfied, the optimal result is output. 

 

Figure 6. IRTH flow chart. 
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3.3. Effectiveness testing 

To verify that the IRTH algorithm has better optimization results compared to 

other algorithms, comparative experiments are conducted on six standard test 

functions for efficient optimization algorithms in the past two years: RTH algorithm, 

frost ice optimization algorithm [16], snow melting optimization algorithm [17], 

Pelican optimization algorithm, and Harris Eagle optimization algorithm. The test 

results are exhibited in Figure 7a–f. IRTH achieves a 100% optimization effect among 

6 test functions, with the search for the optimal value being even better. In the F1, F2, 

and F3 functions, when the four algorithms cannot converge and FILO, IRTH 

successfully seeks optimization with a much faster convergence velocity than others. 

In the F4, all other algorithms fail to optimize, and IRTH avoid derivative convergence 

and escaped local optima. In the convergence curve of the F5, when all other 

algorithms have poor optimization results and cannot converge, the IRTH algorithm 

can still achieve the optimization goal. In the F6, the convergence speed of the IRTH 

is significantly faster than others. Overall, the IRTH algorithm exhibits better 

convergence compared to other algorithms. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Test functions and convergence curves. (a) F1 test function and convergence curve; (b) F2 test function and 

convergence curve; (c) F3 test function and convergence curve; (d) F4 test function and convergence curve; (e) F5 

function and convergence curve; (f) F6 function and convergence curve. 



Molecular & Cellular Biomechanics 2025, 22(3), 1118.  

15 

4. Photovoltaic parameter identification using IRTH algorithm 

Table 1. Parameter identification result. 

Model Function 𝑰𝒑𝒉(𝑨) 𝑰𝒔𝒅(𝝁𝑨)  𝑹𝒔𝒆(𝜴)  𝑹𝒔𝒉(𝜴) 𝑨𝟏 𝜹𝒃𝒆𝒔𝒕 𝜹𝒎𝒆𝒂𝒏 

SDM 

IRTH 0.7608 3.2332 × 10−7 0.0364 53.7343 1.4813 0.00098602 0.00098648 

RTH 0.7608 3.2103 × 10−7 0.0364 53.5734 1.4806 0.00098612 0.0013 

RIME 0.7604 4.4899 × 10−7 0.0344 48.8068 1.5158 0.0019 0.0068 

SAO 0.7606 4.6194 × 10−7 0.0349 66.4177 1.5181 0.0012 0.0018 

POA 0.7612 6.4969 × 10−7 0.0332 72.6135 1.5551 0.0017 0.0024 

HHO 0.7407 6.9977 × 10−7 0.0334 43.0378 1.5691 0.0197 0.0559 

DDM 

IRTH 0.7608 2.6007 × 10−7 0.0366 54.6033 1.4633 0.00098385 0.0011 

RTH 0.7608 1.4188 × 10−8 0.0363 53.4787 1.4684 0.00098836 0.0012 

RIME 0.7618 4.5022 × 10−7 0.0342 64.4678 1.5283 0.0019 0.0031 

SAO 0.7601 7.5418 × 10−7 0.0369 67.3454 1.9313 0.0011 0.0016 

POA 0.7613 2.8542 × 10−7 0.0358 49.5450 1.4787 0.0011 0.0030 

HHO 0.7573 4.5180 × 10−7 0.0324 69.3659 1.5193 0.0041 0.0151 

TDM 

IRTH 0.7608 7.4003 × 10−7 0.0369 55.8722 1.9864 0.00098417 0.0011 

RTH 0.7610 6.1946 × 10−11 0.0362 54.3720 1.9998 0.0010 0.0012 

RIME 0.7624 3.7897 × 10−7 0.0360 99.9886 1.5050 0.0037 0.0056 

SAO 0.7609 2.3045 × 10−9 0.0315 97.7162 1.8698 0.0024 0.0029 

POA 0.7600 2.8936 × 10−8 0.0358 100 1.4708 0.0024 0.0039 

HHO 0.7598 9.0546 × 10−7 0.0156 30.0934 1.7326 0.0145 0.0304 

FDM 

IRTH 0.7608 1.1730 × 10−7 0.0370 56.6225 1.6540 0.00098573 0.0011 

RTH 0.7608 8.2140 × 10−7 0.0369 55.6583 1.9987 0.0010 0.0013 

RIME 0.7618 7.7506 × 10−7 0.0340 58.6837 1.9726 0.0025 0.0066 

SAO 0.7609 9.0411 × 10−8 0.0379 59.4887 1.3799 0.0011 0.0027 

POA 0.7615 6.4365 × 10−7 0.0297 80.1601 1.7914 0.0036 0.0049 

HHO 0.7512 4.2270 × 10−7 0.0126 42.8975 1.6323 0.0224 0.0334 

PMM 

IRTH 0.2060 7.4894 × 10−7 1.9893 1.8597 × 103 16.3070 0.0024 0.0035 

RTH 0.2069 9.9398 × 10−7 1.9369 1.5356 × 103 16.6839 0.0032 0.0050 

RIME 0.2091 3.5128 × 10−5 0.8074 2000 23.5426 0.0175 0.0197 

SAO 0.2075 5.7870 × 10−6 1.4788 1.9999 × 103 19.4912 0.0090 0.0147 

POA 0.2084 4.2326 × 10−6 1.5323 1.0942 × 103 18.9358 0.0090 0.0145 

HHO 0.2099 5.0000 × 10−5 1.0841 1.8589 × 103 24.5504 0.0301 0.0460 

Note: 𝛿𝑏𝑒𝑠𝑡 identifies the optimal value. 𝛿𝑚𝑒𝑎𝑛 is the average value for identification. 

IRTH has been applied to photovoltaic cell models and compared with efficient 

algorithms in PI accuracy, convergence speed, and stability in the past two years. DDM 

is RTC France photovoltaic cell. Photowatt-PWP 201 is selected as the photovoltaic 

module. 

Under standard conditions (temperature of 33 ℃, 1000 W/m2 light intensity), the 

measured voltage and current data are inputted into the identification model and 

simulated on the simulation platform. To lower down the effect of random errors on 
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the accuracy, the maximum iterations for the algorithm are set to 500, and each 

algorithm is independently run 15 times. 

The SDM identification results in Table 1 show that in 15 independent tests, the 

optimal and average error values optimized using IRTH are 0.00098602 and 

0.00098648. Although RTH achieves similar results at the optimal value, IRTH 

performs better than other algorithms in average metrics. This indicates that the 

stability of IRTH is relatively better while ensuring the accuracy of PI. Figure 8 is that 

the convergence speed of IRTH during PI is better than other algorithms, and the final 

optimum identified is significantly smaller than others. The I-V and P-V curves of 

SDM are exhibited in Figure 9. The simulated values identified using IRTH have a 

very high degree of fit with the actual values. 

 

Figure 8. Parameter identification of SDM. 

  
(a) (b) 

Figure 9. Comparative chart of SDM: (a) I-V characteristics; (b) P-V characteristics. 

Figure 10 shows the convergence diagram of the DDM PI. The DDM 

identification results in Table 1 and the DDM current voltage curve presented in 

Figure 11 indicate that the simulated values are highly consistent with the electrical 

characteristics of the battery. This further proves the accuracy and reliability of the 

IRTH algorithm in identifying current values. Overall, the IRTH algorithm has 

demonstrated significant advantages and accuracy in identifying parameters for DDM 
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models. 

 

Figure 10. Parameter identification of DDM. 

 
 

(a) (b) 

Figure 11. Data comparison chart of DDM: (a) I-V characteristics; (b) P-V 

characteristics. 

The TDM identification results in Table 1 show that IRTH performs well in 

identifying TDM models, and the optimal and average error values optimized using 

IRTH are superior to other algorithms. This indicates that IRTH exhibits higher 

excellence when facing more complex and precise systems. Figure 12 shows the 

convergence diagram of TDM PI. In the process of identifying parameters, the 

convergence speed of IRTH is very fast, far exceeding other optimization algorithms. 

This further demonstrates the superiority of IRTH. The current voltage curve of TDM 

in Figure 13 shows that the current and power are extremely consistent with the actual 

data. This result confirms that IRTH has higher accuracy in TDM identification than 

other algorithms. 
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Figure 12. Parameter identification of TDM. 

  
(a) (b) 

Figure 13. Comparative data of TDM. (a) I-V characteristics; (b) P-V 

characteristics. 

In the FDM identification results of Table 1, as the model becomes more complex, 

the identification errors of other algorithms are gradually increasing, demonstrating 

the high stability of IRTH in dealing with complex systems. Figure 14 illustrates the 

convergence diagram of the FDM PI. During the parameter identification process, the 

convergence speed of IRTH is notably rapid, significantly outperforming other 

optimization algorithms. This further highlights the superiority of IRTH. The current-

voltage curve of the FDM in Figure 15 demonstrates that both the current and power 

are in excellent agreement with the actual data. 
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Figure 14. Parameter identification of FDM. 

  
(a) (b) 

Figure 15. Data comparison chart of FDM. (a) I-V characteristics; (b) P-V 

characteristics. 

The identification results of photovoltaic modules in Table 1 indicate that IRTH 

performs the best in photovoltaic module identification. The optimal and average error 

values optimized using IRTH are 0.0024 and 0.0035. Compared with the 𝛿𝑏𝑒𝑠𝑡 values 

identified by other algorithms, the 𝛿𝑏𝑒𝑠𝑡  value identified by IRTH is smaller. 

Compared with the 𝛿𝑚𝑒𝑎𝑛 values of other algorithms, the improvement rate of IRTH 

is 82.56%. 

In Figure16, the convergence speed of IRTH during the PI process is similar to 

RTH and faster than other algorithms before the 40th iteration. After the 40th iteration, 

the convergence speed of IRTH is significantly faster than RTH, and the final 

identified optimum is significantly smaller than all algorithms. In Figure 17, the 

simulated I-V and P-V curves are highly fitted to the measured values. This high level 

of accuracy is crucial for further research and analysis of photovoltaic cell fault 

diagnosis in the future. 
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Figure 16. PMM equivalent circuit diagram. 

  
(a) (b) 

Figure 17. Comparison of PMM. (a) I-V characteristics; (b) P-V characteristics. 

 

Figure 18. IRTH improvement rate radar chart. 

This article calculates the 𝛿𝑚𝑒𝑎𝑛  value of other algorithms, compares it with 

IRTH, calculates the model improvement rate, and presents the results in Figure 18. 

IRTH has been improved on different models. Among them, FDM and PMM have the 

highest improvement rates, reaching 83.89% and 82.56% respectively, while DDM 
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has a relatively low improvement rate, with an average improvement rate of 79.94%. 

This indicates that IRTH not only has significant improvement effects on individual 

models, but also has obvious overall advantages on all models. To ensure that the PV 

models (SDM, DDM, TDM) accurately represent real-world systems, the study further 

conducted an extensive data collection effort. PV system performance data were 

collected from different geographical locations and climatic conditions including 

various light intensity, temperature and load conditions. These included temperatures 

of 25 ℃, 30 ℃, 35 ℃ and light intensities of 800 W/m2, 1000 W/m2, 1200 W/m2. 

Meanwhile, based on the manufacturer’s data, the relevant parameters were initially 

estimated. The model calibration results were obtained, as shown in Table 2. 

Table 2. Testing of model calibration results. 

Temperature (℃) Light intensity (W/m2) Actual voltage (V) Model predicted voltage (V) 

25 

800 0.705 0.698 

1000 0.752 0.746 

1200 0.815 0.808 

30 

800 0.723 0.717 

1000 0.780 0.772 

1200 0.840 0.835 

35 

800 0.735 0.728 

1000 0.795 0.790 

1200 0.855 0.853 

As can be seen from Table 2, the error between the model prediction results and 

the real voltage is small, with the error ranging from 0.004–0.008 V. This indicates 

that the over-calibrated model is able to predict the voltage output of the PV system 

under different conditions more accurately. It also shows that the robustness of the 

model is more reliable. 

5. Cross-cutting applicability analysis 

Finally, to further demonstrate the effectiveness of the IRTH algorithm, the study 

applies it to a logistics optimisation problem for algorithm performance evaluation. 

The Vehicle Routing Problem (VRP) is chosen as a test case. VRP is a classical 

problem in logistics and supply chain management, where the objective is to minimise 

the total distance travelled by a group of vehicles while satisfying customer demand 

and vehicle capacity constraints. In order to adapt the characteristics of VRP, the IRTH 

algorithm is first adapted. The population size and the number of iterations of the IRTH 

algorithm are adjusted, and the paths in the VRP problem are represented as a series 

of arrangements of customer nodes. Meanwhile, other heuristic algorithms are 

introduced to compare the performance of different methods in solving VRP. These 

include Genetic Algorithm (GA), Particle Swarm Optimisation (PSO) algorithm and 

Ant Colony Optimisation ACO) algorithm. A publicly available library of VRP 

instances, including test cases of different sizes (20, 50, and 100 client points) and 

different densities (sparse, medium, and dense) are selected for the experiments, and 

the specific results are shown in Table 3. 
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Table 3. Comparison results of different algorithms for solving VRP. 

Algorithm 
Mean number of convergences 

(Times) 

Mean total distance 

travelled (km) 

Mean completion 

time (s) 

Standard deviation of total distance 

travelled (km) 

IRTH 78 562.3 0.9 15.2 

GA 120 588.7 1.2 22.6 

PSO 95 575.4 1.1 18.4 

ACO 105 581.9 1.2 20.1 

As can be seen from Table 3, the IRTH algorithm proposed in the study is still 

superior in solving the VRP problem. Compared with GA, PSO and ACO, the average 

number of convergences of IRTH algorithm is reduced by 35%, 17.89% and 25.71% 

respectively. Comparing the average total distance travelled by the vehicles under the 

four algorithms, it can be seen that the IRTH solution is more advantageous, with the 

logistics vehicle travelling a distance of only 562.3 km, and the completion time of the 

solution is only 0.9 s. This indicates that the IRTH algorithm has a faster convergence 

speed, higher solution quality and good robustness in solving the VRP problem. 

Compared with other heuristic algorithms, the IRTH algorithm provides better 

solutions in most cases. These results further demonstrate the flexibility and powerful 

optimisation capabilities of the IRTH algorithm. 

6. Conclusion 

This article proposed an IRTH algorithm for photovoltaic cell PI, which 

effectively improved the precision and velocity of photovoltaic cell model PI. The 

specific summary is as follows: 

(1) Multiple mathematical models of DDM and photovoltaic modules were 

constructed, and objective functions and solution vector models were established 

based on them. Subsequently, the key parameters to be identified in each model were 

identified, and RMSE was used as the standard to measure the accuracy of PI. 

(2) Multidimensional improvements have been made to the RTH to avoid being 

FILO, and to enhance the original algorithm’s global search ability and convergence 

velocity. 

(3) Innovatively analogizing the photoelectric conversion unit to a biomaterial 

unit with specific mechanical response characteristics, and deeply exploring the 

current voltage characteristics of photovoltaic cells from the perspective of mechanical 

response characteristics. 

(4) The improved RTH was taken to make PI of the photovoltaic cell model. The 

optimal and average values were superior to other models, with an average 

improvement rate of 79.94%. 

The PI method for photovoltaic cells grounded on IRTH presented in this article 

mainly aims to achieve PI for five typical photovoltaic models. The next step will be 

to study the fault diagnosis method for photovoltaic cells. 
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