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Abstract: This study aims to explore the dynamic relationship between biomechanical 

modeling and manufacturing productivity in the context of the digital economy, with a 

particular focus on the interaction between worker movement patterns and production 

efficiency. By combining biomechanical analysis with VAR (Vector Autoregressive) models, 

this study reveals the dynamic effects of worker movement patterns on productivity. The VAR 

model, as a multivariate time series analysis tool, can effectively examine the causal 

relationship between factors such as production efficiency, labor input, technological level and 

worker movement patterns. In the study, kinematic and dynamic analysis were combined, with 

a focus on analyzing biomechanical variables such as the movement trajectory, velocity, 

acceleration, and applied forces of workers’ arms and joints during the execution of production 

tasks, in order to evaluate the impact of these factors on production efficiency. Biomechanics 

modeling helps quantify the effects of long-term repetitive movements on joint load and muscle 

fatigue in workers, providing potential pathways for optimizing worker movement patterns and 

work postures to reduce energy consumption and improve productivity. In addition, this study 

also ranked the development level of the digital economy in various provinces of China through 

principal component analysis (PCA) and found that the high development of the digital 

economy is closely related to the construction of information infrastructure. Based on the lag 

analysis of the VAR model, this study further explores the feedback effects of technological 

progress and automation level on workers’ movement patterns and production efficiency. The 

results indicate that with the advancement of automation technology, the interaction mode 

between workers and automation equipment has changed, and the optimization of worker 

actions is closely related to productivity improvement. Through this multidimensional 

analytical framework, this study provides theoretical support for the combination of the digital 

economy and biomechanics and offers new perspectives and methods for industrial 

optimization and labor productivity improvement in the manufacturing industry. 

Keywords: biomechanical modeling; VAR model; digital economy; worker movement 

patterns; production efficiency; automation; fatigue analysis 

1. Introduction 

In the natural world, organisms exhibit complex and adaptive behaviors in 

response to environmental stimuli. These adaptive behaviors, optimized through 

evolutionary forces, serve as a powerful metaphor for how modern industries, 

especially the digital economy and manufacturing, evolve and optimize their processes 

[1–3]. The relationship between the digital economy and manufacturing mirrors 

biological systems: Just as organisms rely on coordinated movement and efficient 

energy distribution to thrive, so too must modern industries streamline their operations 

and optimize resource use. 
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The digital economy, akin to a sophisticated nervous system in a biological 

organism, facilitates efficient information flow and resource allocation. The 

manufacturing sector, on the other hand, functions as the body’s musculature, where 

efficiency, coordination, and adaptability are crucial for successful output [4–6]. 

However, optimizing this “muscular system” in the manufacturing context requires a 

deeper understanding of biomechanics, which studies the forces and movements that 

occur within the human body during physical activity. 

Biomechanics principles can be leveraged to enhance the performance of workers 

within the manufacturing industry. Much like the intricate coordination of muscle 

groups during complex physical tasks, human labor in manufacturing requires careful 

consideration of how the body distributes and manages force during repetitive or 

strenuous tasks [7,8]. By applying biomechanics, it is possible to improve worker 

posture, optimize movement efficiency, and reduce physical strain. These 

improvements not only contribute to the reduction of workplace injuries but also 

enhance productivity by ensuring workers can perform tasks with minimal energy 

expenditure and maximum precision. 

For example, the role of the leg muscles when walking or running—where 

various muscle groups work together to distribute force and maintain energy 

efficiency—can be analogized to how workers in a factory setting perform their tasks. 

Just as the body coordinates different muscle groups for fluid motion, a factory 

environment can be optimized to support workers by reducing physical strain and 

improving motion efficiency [9,10]. This can be achieved through ergonomic 

interventions based on biomechanics that design tools, workstations, and workflows 

to match the body’s natural movements. These ergonomic solutions reduce 

unnecessary energy expenditure, decrease fatigue, and ensure that workers can sustain 

high levels of productivity over extended periods [11]. 

In a manufacturing environment, biomechanics can be applied to the analysis of 

repetitive tasks that require fine motor control. As automation and digital technologies 

like robotics and AI become more prevalent, there is a growing need for workers to 

develop precision and dexterity, akin to the fine-tuned control exhibited by the hands 

during skilled tasks [12,13]. By understanding the biomechanical aspects of hand 

movements and muscle activation patterns, ergonomics experts can design tools and 

machinery that complement these natural movements, making the interaction between 

workers and machines more fluid and efficient. This would enhance the workers’ 

ability to perform complex tasks with greater ease, reducing muscle strain and 

boosting innovation in manufacturing processes. 

Additionally, biomechanics plays a crucial role in the intersection of labor health 

and technological advancement in the digital economy [14]. The integration of 

wearable technologies and exoskeletons in manufacturing—both of which are 

increasingly being used to support workers in physically demanding tasks—can be 

optimized through biomechanical insights. For instance, exoskeletons, which help 

distribute weight and reduce strain on the body, can be designed more effectively by 

understanding how the human body naturally moves and bears weight. Similarly, 

wearable devices that track worker posture and muscle strain can provide real-time 

feedback to help employees adjust their movements, preventing the development of 

musculoskeletal disorders that are common in manual labor. 
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Another important consideration is the long-term impact of digital technologies 

on labor health. As the digital economy advances and the manufacturing sector adopts 

more automation, the physical demands on workers will change. The biomechanical 

implications of these changes must be carefully studied to ensure that new systems do 

not inadvertently lead to physical strain or fatigue. For example, as workers 

increasingly interact with robots or digital interfaces, the repetitive motions and 

prolonged sitting or standing can lead to postural problems or musculoskeletal pain 

[15,16]. By incorporating biomechanics into the design of digital systems and 

workplace ergonomics, it is possible to mitigate these risks and ensure that 

technological advances improve, rather than undermine, worker health. 

Moreover, biomechanics can play a critical role in enhancing innovation 

capabilities in manufacturing. By optimizing the interaction between workers and 

machines through biomechanical insights, companies can improve the efficiency and 

accuracy of their manufacturing processes [17,18]. This could lead to greater 

innovation in product design, production methods, and technological integration. A 

more efficient workforce, supported by ergonomic tools and machinery, is better 

equipped to adapt to new technologies and methods, thus fostering a culture of 

innovation and creativity. 

In summary, biomechanics provides invaluable insights into optimizing labor 

performance, improving worker health, and enhancing manufacturing innovation in 

the digital economy. Just as the human body relies on coordinated and efficient muscle 

actions for movement, modern manufacturing industries can benefit from 

biomechanics to streamline operations, optimize labor efficiency, and ensure the long-

term health of the workforce. By integrating biomechanics with digital technologies, 

it is possible to create a harmonious relationship between human capabilities and 

technological advancements, ultimately fostering a more productive and sustainable 

manufacturing sector. 

2. Ecosystem analogy and biomechanics principles in 

manufacturing transformation 

In the process of manufacturing transformation under the digital economy, the 

role of energy flow, resource allocation, and system optimization can be better 

understood through biomechanical analogies. Biomechanics studies the structure and 

function of biological systems using principles of mechanics, revealing insights into 

how forces, energy, and motion interact within organisms. Applying these principles 

to the industrial ecosystem unveils a deeper understanding of collaborative evolution 

in the digital economy [19]. 

2.1. Force transmission and resource allocation 

In biomechanics, the efficient transfer of forces through biological systems is 

critical for mobility and stability. Similarly, in manufacturing, the digital economy 

acts as a transmission medium that enhances resource allocation efficiency. For 

example: 

Just as tendons and ligaments transmit forces and stabilize joints, digital 

platforms connect disparate manufacturing units, enabling seamless communication 
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and collaboration. The modularization effect in manufacturing mirrors the 

stabilization and dynamic adaptability provided by these biological structures. 

In biological systems, metabolic pathways ensure optimal energy distribution for 

cellular processes. Analogously, the integration of big data analytics and IoT (Internet 

of Things) in manufacturing ensures that energy and resources flow to the most critical 

processes, optimizing production efficiency and reducing waste. 

2.2. Adaptation to environmental stimuli 

Biomechanical systems exhibit remarkable adaptability to changing 

environmental conditions, such as variations in load or terrain. In the manufacturing 

context, the digital economy enables firms to adapt to market demands and external 

shocks, such as the COVID-19 pandemic, with greater agility. 

When a limb encounters uneven terrain, biomechanical systems redistribute 

forces to maintain balance. Similarly, digital tools enable manufacturers to 

dynamically reallocate resources, prioritize production lines, and optimize supply 

chains in response to fluctuating consumer demands [20]. 

Feedback loops in biological systems, such as reflex arcs, allow organisms to 

react swiftly to external stimuli. Digital twin technology in manufacturing serves a 

comparable role, providing real-time feedback and predictive analytics to refine 

processes and preemptively address inefficiencies. 

3. D-S model extension and biomechanical insights 

The D-S model’s extension provides a mathematical framework for 

understanding the interplay between the digital economy and manufacturing. 

Incorporating biomechanical perspectives enriches this model by emphasizing 

dynamic balance, adaptive optimization, and efficient resource use. 

3.1. Elasticity and load distribution 

In biomechanics, elasticity ensures that tissues absorb and redistribute forces 

effectively, preventing damage. Similarly, elasticity in manufacturing—enabled by 

the digital economy—allows for: 

The modular division of labor mirrors the elastic properties of muscles, which 

can operate independently or in coordinated groups depending on the task. 

The integration effect of the digital economy helps absorb external shocks (e.g., 

market volatility) by redistributing resources and maintaining equilibrium. 

3.2. Population dynamics and resource competition 

Biomechanics also studies population-level interactions, such as predator-prey 

dynamics and resource competition. The D-S model’s exploration of geographical 

agglomeration parallels these concepts: 

Just as species cluster in resource-rich habitats, manufacturing firms tend to 

agglomerate in regions with advanced digital infrastructure. This clustering facilitates 

innovation and reduces transaction costs. 

In biomechanical terms, migratory behavior allows species to access distant 

resources. Similarly, advancements in digital logistics enable manufacturing firms to 
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distribute goods efficiently across vast distances, overcoming traditional geographic 

limitations. 

A new school of digital economics is emerging. Taking cost-benefit as an 

example, as shown in Figure 1, as the output increases, the marginal benefit of the 

industrial economy decreases and the marginal cost increases. However, in the digital 

economy, the directions of these two curves are completely opposite, indicating that 

the current economy needs to expand its research scope and urgently needs to 

incorporate the new features of the information industry. 

 

Figure 1. Cost benefit curve. 

In the digital economy, consumer-centricity has become the main theme of 

enterprise operation and production. Personalized flexible production, green 

manufacturing that meets environmental requirements, and cost-saving intelligent 

manufacturing have become important directions for future manufacturing, and the 

digital economy and the digital economy coexist in interaction. From a geographic 

perspective, on the one hand, due to the traditional awareness of local protection and 

the promotion of officials, China has serious market segmentation, and the emergence 

of the digital economy will help reduce the impact of market segmentation; on the 

other hand, geographic agglomeration is difficult to reverse. The digital economy is 

more likely to be generated in areas with good infrastructure, so the digital economy 

may further strengthen geographic agglomeration. From the perspective of production, 

the specific performance is that with the help of a new generation of information 

products, the improvement of production effects and the reduction of transaction costs, 

such as the reduction of information interaction costs and the reduction of 

transportation costs by optimizing transportation plans, etc. Further, the digital 

economy promotes the modular division of labor in the manufacturing industry, 

thereby realizing rapid response to the long-tail demand of consumers, enhancing the 

dynamic flexibility of the manufacturing industry, and strengthening the stickiness 

between the manufacturing industry and consumers. Therefore, according to the above 

typical characteristics, the transformation and upgrading of the digital economy and 

manufacturing can be divided into integration effect, modular effect, complementary 

effect and acceleration effect (as shown in Figure 2). 
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Figure 2. The important effects. 

From the perspective of new economic geography, manufacturing agglomeration 

is mainly affected by transaction costs. Marginal information costs are basically zero, 

communication costs are extremely low, and the optimization of big data algorithms 

can effectively reduce transportation costs and promote manufacturing firms that are 

further geographically clustered. Further, this paper draws on the practice of space 

economics and gives the corresponding mathematical derivation. First, under 

conditions of monopolistic competition, the price and output of zero profit are given. 

Monopolistic competition firm markup pricing method, we can get: 

𝑃𝑚 =
𝑤 𝑏𝑚

1 −
1

𝑔(𝐼)

 
(1) 

Therefore, the equilibrium output of any independent decision-making firm under 

zero profit conditions is: 

𝑌 =
𝜌(𝐼) − 1

𝑏𝑚
𝐹𝑚 (2) 

The profit of a firm sold in other regions is: 

𝜋2 = 𝜏𝑃𝑚𝑌1 − (𝐹𝑚 + 𝑏𝑚𝑌1)𝑤 − 𝐹𝑡(𝐼) (3) 

According to the zero profit condition, the firm’s equilibrium output is obtained: 

𝑌1 =
𝑤 𝐹𝑚 + 𝐹𝑡(𝐼)

[(𝜏 − 1)𝜌(𝐼) + 1]𝑏𝑚𝑤
(𝜌(𝐼) − 1) (4) 

𝜏 =
𝐹𝑡(𝐼)

𝑤 𝐹𝑚𝜌(𝐼)
+ 1 (5) 

The sign of the derivative of the iceberg transaction cost to the digital economy 

is consistent with the derivative of the iceberg transaction cost to the information 

industry, and the iceberg transaction cost to the information industry is derived: 

𝑑𝜏

dI
=

𝜕𝜏

𝜕𝜌

𝑑𝜌

dI
+

𝜕𝜏

𝜕𝐹𝑡

dF𝑡

dI
=

1

wF𝑚𝜌(𝐼)
(
dF𝑡

dI
−

𝑑𝜌

dI

𝐹𝑡(𝐼)

𝜌(𝐼)
) (6) 

In the above formula, it can be divided into two parts: The part outside the 

brackets is greater than zero, and the part inside the brackets depends on the 

information industry’s impact on transaction costs and differentiated products and the 
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ratio of transaction costs to differentiated product demand. Under the conditions of 

interregional trade, in a small geographic space such as a city group, when the 

transaction cost is small (Ft → 0), the transportation cost is almost zero, and the 

institutional and cultural differences are small. The iceberg transaction cost has a 

derivative of the information industry as negative, indicating that in a close 

geographical space (assuming the critical value is h), the higher the degree of the 

digital economy, the lower the iceberg transaction cost, and the local advantageous 

manufacturing manufacturers are more inclined to produce in the region and export 

goods to other regions, the more It is easy to form advantageous manufacturing sub-

sectors and gather locally. In the long-distance geographic space (over the critical 

value h), the transaction cost is still high, the transportation cost is large, and the 

institutional and cultural differences are obvious. It may be sold by transferring 

production lines or setting up a branch. As shown in Figure 3: 

 

Figure 3. D-S model iteration method. 

Therefore, this paper uses the manufactured goods index and the information 

goods consumption index represented by M and I, respectively, while assuming that 

both indices satisfy a constant elasticity of substitution production function of the form: 

𝐼 = (∫ [𝐼(𝐽)]1−1/𝜌
𝑁

0

dj)
1

1−1/𝜌 (7) 

𝑀 = (∫ [𝑚(𝑖)]1−1/𝜌
𝑟

0

di)
1

1−1/𝜌 (8) 

The labor distribution ratio between manufacturing and IT is represented by 

Equation (8), which is the sum of the manufacturing share (p) and the IT share (1 − p) 

equal to 1. This is comparable to the model of how muscle groups in a biomechanical 

system distribute load. In biological systems, various muscle units distribute forces 

based on task demands to achieve efficient movement. Leg muscles like the quadriceps 

and gastrocnemius, for instance, coordinate the division of work while walking or 

running in order to establish dynamic balance and energy efficiency. 
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For the sake of simplification, it is assumed that the manufacturing and 

information industries only use fixed capital factors in order to produce the 

corresponding manufactured products and information products, so the variable 

production factor can be considered as a production factor of labor. Assuming that all 

labor factors are employed in the manufacturing industry and the information industry, 

respectively, the labor force share of the manufacturing industry and the labor force 

share of the information industry account for β times and 1 − β times the total labor 

force, respectively. At the same time, this paper believes that all firms in the market 

have the same technical level, each firm produces only one product, and whether it is 

the manufacturing or information industry, the increasing returns to scale of the two 

are reflected in the increase in the number of manufactured products or information 

products. 

Then, find the amount of labor required for the finished product. Since the 

finished product only uses labor input, the labor amount is the sum of the product of 

the fixed cost plus the marginal cost and the output, that is: 

𝐿𝑌 = 𝐹𝑚 + 𝑏𝑚𝑌 (9) 

The quantity of labor input needed to create a final product is determined by 

Equation (9), which is the product of output and the total of fixed and marginal 

expenses. The fundamental concept is comparable to the notion of energy expenditure 

in an organism’s activities. A combination of exercise energy requirements (marginal 

cost) and basal metabolic expenditure (fixed cost) determines how much energy an 

organism needs to perform a specific action (such as jumping or climbing). 

Secondly, find the profit of the finished product enterprise, considering that all 

enterprises have the same production technology and only use labor production factors; 

then the representative enterprise profit is the difference between the income of the 

finished product and the cost of hiring labor: 

𝜋1 = 𝑃𝑚𝑌 − (𝐹𝑚 + 𝑏𝑚𝑌)𝑤 (10) 

Combining the mathematical model derivation of the above two aspects, it can 

be found that the digital economy. And timely and accurate delivery to the 

manufacturing industry, under the premise of identifying market demand, 

manufacturers have to improve their innovation capabilities in order to provide 

corresponding high-quality products. On the other hand, as shown in the formula, the 

improvement of the innovation ability of manufacturing manufacturers needs to be 

equipped with more advanced information products to support data collection, 

modular division of labor, collaboration, etc. [21]. 

4. Biomechanical modeling and dynamic system analysis 

This study presents a biomechanical modeling technique that combines 

biomechanical computational methods, such as kinematics and kinetic analysis, to 

analyze the impact of workers’ movement patterns on productivity in the 

manufacturing process. This approach aims to thoroughly examine the relationship 

between the digital economy and the manufacturing industry, particularly with regard 

to productivity and workforce optimization. A theoretical foundation for workforce 

optimization in the manufacturing sector under the digital economy is provided by this 
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modeling approach, which allows us to quantify the movement patterns of the 

workforce during the manufacturing process and evaluate their effects on worker 

health and productivity. 

4.1. An overview of biomechanical modeling 

Biomechanical modeling consists primarily of kinematic and kinetic analyses, 

where kinematics studies the movement of an object or human body in space without 

regard to the forces exerted on it, and kinetics focuses on the mechanics behind the 

movement of an object and how forces affect its state of motion. Through kinematic 

and kinetic analyses, we are able to quantify the force and energy expenditure required 

by workers during the production process and thus assess its impact on overall 

productivity and health. 

The productivity and health of factory workers are directly impacted by their 

movement patterns, including posture, hand manipulation, and stride. Long-term 

repetitive motions or bad posture, for instance, raise the risk of worker weariness and 

injury, which lowers productivity. It is feasible to measure and examine the 

effectiveness of employees’ actions throughout the manufacturing process by 

implementing a biomechanical model, which enhances workflow and boosts overall 

productivity. 

4.2. Integration of biomechanical modeling with VAR modeling 

To investigate the dynamic effects of workers’ movement patterns on 

productivity during the manufacturing process, a VAR (Vector Autoregressive) model 

was integrated with the biomechanical model in this study. By presenting the findings 

of biomechanical analyses, this study investigates the causal relationship between 

workers’ movement patterns and productivity. VAR models are typically used to 

examine the relationships between numerous time series. 

The dynamic effects of worker action patterns on productivity can be examined 

by including biomechanical models into the VAR (vector autoregressive) model while 

researching the relationship between the manufacturing sector and the digital economy. 

We can include these biomechanical variables in the VAR model if the biomechanical 

study yields worker action efficiency indicators. VAR model formula: 

𝑌𝑡 = 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ + 𝐴𝑝𝑌𝑡−𝑝 + 𝜀𝑡 (11) 

where 𝑌𝑡 denotes variables such as production efficiency and labor input at moment t, 

𝐴1, 𝐴2, . . . , 𝐴𝑝 is the coefficient matrix, and 𝜀𝑡 is the error term. 

In this model, biomechanical factors (e.g., movement pattern variables, force 

exertion, etc.) can be added as exogenous variables in order to analyze their impact on 

productivity. 

In particular, workers’ movement pattern variables, such as gait analysis, joint 

angle variations, and force output, can be coupled with individual variables in the VAR 

model, such as production efficiency, labor inputs, technology level, etc. This makes 

it possible to predict the feedback effects of technological advancements or shifts in 

the degree of automation on labor force movement patterns, as well as the dynamic 

effects of various workers’ movement patterns on production efficiency. 
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4.3. Kinematics and dynamics analysis 

Kinematic analysis is mainly used to characterize the trajectory, velocity, 

acceleration and other parameters of the worker’s motion. In manufacturing, the 

trajectory of the worker’s motion has a significant impact on productivity, especially 

in manual operations or assembly tasks. 

In kinematic analysis, we are mainly concerned with the trajectory, velocity and 

acceleration of the worker, and the commonly used kinematic equations are as follows: 

𝑟(𝑡) = 𝑟0 + 𝑣0𝑡 +
1

2
𝑎𝑡2 (12) 

Among them, 𝑟(𝑡) represents the displacement of the object at time t, 𝑟0 is the 

initial displacement, 𝑣0 is the initial velocity, and a is the acceleration. 

𝑣(𝑡) = 𝑣0 + 𝑎𝑡 (13) 

Among them, 𝑣(𝑡) represents the speed of the worker at time t, 𝑣0 is the initial 

speed, and a is the acceleration. 

By modeling and analyzing the motion trajectories of workers’ arms, fingers and 

other key parts, the following conclusions can be drawn: 

Because precise movement patterns allow employees to focus on the task at hand 

and minimize superfluous motions, they frequently result in increased productivity. 

Error rates can be decreased and operational speed raised by optimizing a worker’s 

hand and body movement routes. Figure 4 illustrates a worker’s movement route 

during a task, highlighting joint angle changes, arm locations, and other details to aid 

in the analysis of movement efficiency. Long-term repetition of the same motion will 

wear out employees and reduce their mobility efficiency. The impact of fatigue on job 

productivity can be seen by simulating workers’ movement performance over various 

working hours using biomechanical modeling. 

 
Figure 4. Schematic diagram of biomechanical movement trajectories. 

Kinetic analysis, on the other hand, focuses on the relationship between force and 

motion, in particular the forces exerted by the worker while performing a task, joint 

loads, etc. Through kinetic modeling, it is possible to analyze the forces and energy 

expenditures required by workers during operations and assess the impact of these 

factors on productivity. Common kinetic analysis models include: 

Kinetic analysis is concerned with the relationship between force and motion, 

especially the arithmetic of joint and muscle loading. 

𝐹 = 𝑚𝑎 (14) 
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Among them, F is the resultant force applied to the worker, m is the mass of the 

worker, and a is the acceleration of the worker’s movement. 

𝜏 = 𝐹 · 𝑟 (15) 

where 𝜏 is the joint load (moment), F is the applied force, and r is the distance from 

the joint to the point where the force is applied. 

For tasks that involve complex hand or leg movements during production, joint 

load analysis can help assess the forces exerted by the worker while performing the 

task, and in turn, analyze the muscle fatigue and joint damage that may result from 

prolonged repetitive operations. 

In order to examine the impact of long-term repeated operations on joints, Figure 

5 shows how worker joint loads (such as elbow and shoulder) vary with time for a 

specific task. Mechanics optimization models can be used in manufacturing to model 

how various worker movement patterns affect productivity. For instance, optimizing 

the worker’s working posture and movement patterns can reduce energy loss and boost 

output while requiring less force. 

 
Figure 5. Joint load analysis diagram. 

4.4. Dynamic feedback in the interaction of biomechanics and the digital 

economy 

Biomechanical analysis not only focuses on the health and efficiency of the 

workforce, but can also help reveal the impact of the digital economy on labor 

conditions in manufacturing. For example, as automation and digital technologies 

continue to evolve, the role of the labor force in the production process is gradually 

changing. Through biomechanical modeling, it is possible to quantify the movement 

patterns and force exertion of workers as they interact with automated systems, and 

explore how automated equipment can optimize workforce movement and improve 

productivity. 

By accelerating processing speed and data availability, the digital economy is 

propelling automation and intelligence in production. We can evaluate how these 
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technology advancements affect labor movement patterns with the aid of 

biomechanical modeling techniques, which helps us develop strategies for industrial 

optimization in the digital economy. We can create workflows and work environments 

that are more biomechanically sound, lowering needless mechanical burdens and 

boosting productivity, by examining how technological advancements impact workers’ 

movement efficiency. 

5. Result 

5.1. KMO and Brtlett’s test 

Before doing principal component analysis, KMO and Bartlett sphericity tests 

must be performed to determine whether the data are feasible. The results obtained are 

shown in Table 1: 

Table 1. KMO and Bartlett test results. 

Kmo sampling appropriateness measurement Bartlett sphericity test  0.82 

 Approximate chi square 738.42 

 Freedom 65 

 Significance 0 

The test results show that KMO is 0.82, and the test standard is KMO > 0.5, P < 

0.05, so the data are suitable. 

5.2. Principal component analysis  

In this paper, SPSS software was used for principal component analysis, and the 

results obtained are shown in Table 2: 

Table 2. Results of principal component analysis. 

Initial eigenvalue Extract the sum of squares of loads 

Component Total % variance Cumulative% Total % variance Cumulative% 

1 8.51 70.86 70.86 8.51 70.86 70.86 

2 1.41 11.72 82.59 1.41 11.72 82.59 

3 0.97 8.08 90.67    

The cumulative variance contribution rate reaches 82.59%. It can be considered 

that the extraction of the first two principal components can reflect the original 12 

variables, and then use the first two principal components to rank the digital economy 

development level of China’s provinces in 2018. Table 3 is the component matrix: 

Table 3. Component matrix of principal components. 

Component 

 𝒂𝟏 𝒂𝟐 

𝑥1 0.35 0.81 

𝑥2 0.52 0.63 
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Table 3. (Continued). 

Component 

 𝒂𝟏 𝒂𝟐 

𝑥3 0.83 0.37 

𝑥4 0.59 0.02 

𝑥5 0.73 -0.21 

𝑥6 0.96 -0.19 

𝑥7 0.94 -0.17 

Through the formula in the previous section, the eigenvector matrix is calculated, 

as shown in Table 4: 

Table 4. Principal component eigenvector matrix. 

Component 

 𝒛𝟏 𝒛𝟐 

𝑥1 0.13 0.68 

𝑥2 0.19 0.53 

𝑥3 0.17 0.21 

𝑥4 0.26 0.02 

𝑥5 0.31 -0.16 

𝑥6 033 -0.15 

𝑥7 0.32 -0.14 

Judging from the above empirical results, most of the provinces with the highest 

digital economy development level are provinces with relatively leading economic 

development levels, ICT industry scales and information infrastructure construction. 

The top five provinces are all the provinces with the earliest start of the ICT industry 

in China. After the impact of the international economic crisis, the above-mentioned 

provinces have upgraded the industrial structure of the ICT industry, attracted talents, 

and increased investment and research and development efforts. The results of the lag 

period of the VAR model are shown in Table 5: 

Table 5. VAR model lag period results. 

Lag LogL LR FPE AIC SC HQ 

0 13.21  0 −0.91 −0.72 −88 

1 86.05 109.27 0 −6.601 −5.61 −6.41 

2 107.31 23.39 0 −7.13 −5.34 −6.78 

3 136.30 20.29 0 −8.43 −5.84 −7.92 

From the perspective of application and penetration level, this result is not 

difficult to explain. The level of development is mainly due to its own economic 

development level and the development and potential of informatization. In the 

process of integrating the primary and secondary industries, it will inevitably be 

limited by the development level of information infrastructure. The western provinces 
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mainly rely on traditional industries and are limited by economic foundations, 

geographical locations and historical reasons. As shown in Figure 6: 

 
Figure 6. Eigen root stationary test. 

In the VAR model established in this paper, the lag period is 2. The results in the 

above table show that the inverted model results of the above 8 characteristic roots are 

all less than 1. The AR is presented in the figure Root, and if at least one characteristic 

root has an inverted modulus equal to 1 or greater than 1. Therefore, the VAR model 

established above can pass the stability test, and it can be considered that the 

established model is stable; the next step of impulse response analysis can be 

performed. As shown in Figure 7: 

 
Figure 7. Impulse response analysis. 

From the perspective of R&D innovation capability, the obtained results are in 

line with the expected results. Beijing, Shanghai, Guangdong and other regions have 

strong innovation and R&D capabilities. The most important factor is that these 

regions have good scientific research resources, a high level of science and education, 

and a high level of technology. The development of the information industry and 

software industries is faster than in other regions; the tertiary industry in these regions 

is prosperous, and Internet consumption is relatively active. Areas such as Inner 

Mongolia have weak technological innovation capabilities, few high-tech industries in 
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the local area, strong dependence on traditional industries, little investment in 

scientific research and innovation, slow development of high-tech industries such as 

digital economy industries, and local people’s digital economy consumption is not 

affected. 

5.3. The relationship between biomechanics and the digital economy 

Table 6 demonstrates the changes in workers’ limb movements during the work 

process before and after the transformation of the manufacturing industry driven by 

the digital economy, especially the differences in movement efficiency and muscle 

loading. 

Table 6. Comparison of workers’ somatic movement trajectories before and after manufacturing transformation. 

Time/Stage 
Pre production posture (displacement/joint 

angle) 

Post production posture (displacement/joint 

angle) 

Change amount 

(%) 

Production start stage 0.15 m (shoulder angle: 45°) 0.12 m (shoulder angle: 40°) −20% 

Mid production stage 0.25 m (knee joint angle: 90°) 0.20 m (knee joint angle: 85°) −20% 

End of production stage 0.10 m (back angle: 30°) 0.08 m (back angle: 28°) −15% 

Table 6 compares the changes in movement trajectories and joint angles of 

workers before and after the manufacturing transformation at the beginning, middle, 

and end stages of production, reflecting the optimization of workers’ physiques by 

digital economy technologies. 

Table 7 demonstrates how workers’ biomechanical performance (e.g., joint 

forces, postural changes, etc.) changes under different production conditions. Compare 

the effects of traditional and optimized production environments on worker 

ergonomics. 

Table 7. The effect of optimizing the production environment on workers’ performance in physical science. 

Production environment 
Joint loading (knees, 

shoulders, etc.) 

Degree of posture 

optimization 

Muscle fatigue (0–

10) 

Productivity 

(units/hour) 

Traditional production 

environment 
50 N (knee), 40 N (shoulder) Poor 7 30 

Optimize production 

environment 
30 N (knee), 25 N (shoulder) Optimize 4 40 

Table 7 demonstrates that by optimizing the production environment (e.g., use 

of ergonomic tools, digital aids, etc.), workers experience reduced loads on their knees 

and shoulders, more optimal postures, and less muscle fatigue, resulting in increased 

productivity. 

With an emphasis on the effects of variables like pace efficiency and energy 

consumption, Table 8 illustrates how workers’ gaits change under various production 

settings (such as traditional versus digitally assisted production environments). 

Employees’ stride becomes more efficient and their energy consumption decreases in 

digital production environments, according to a comparison of pace efficiency, gait 

speed, and energy consumption data. This suggests that digital technology maximizes 

physical performance throughout the work process. 
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Table 8. Gait analysis of workers under different production conditions. 

Production environment Step efficiency (stride/step frequency) Gait speed (m/s) Energy consumption (Joule) 

Traditional production environment Step width: 0.7 m, step frequency: 1.2 Hz 1.4 m/s 180 J 

Digital production environment Step width: 0.8 m, step frequency: 1.5 Hz 1.7 m/s 150 J 

6. Conclusion 

The interactive relationship between the digital economy and manufacturing can 

be seen as a complex adaptive system analogous to an ecosystem, exhibiting 

characteristics of resource optimization, dynamic balance, and collaborative evolution. 

Research has shown that the digital economy promotes the optimization of 

manufacturing resource allocation and the enhancement of innovation capabilities 

through “integration effect,” “modularization effect,” “complementarity effect,” and 

“acceleration effect.” This process is similar to the dynamic mechanism of energy flow 

and species collaboration in ecosystems. Under this framework, the digital economy 

is like an information network in the ecosystem, providing efficient information 

transmission and resource-sharing mechanisms for the manufacturing industry, 

enabling it to better adapt to changes in market demand, enhance dynamic resilience 

and competitiveness. 

In addition, the regional clustering effect of the digital economy is analogous to 

the heterogeneity of population distribution in ecosystems. The digital economy is 

more likely to thrive and develop in regions with well-developed infrastructure and 

smooth information flow, and this “locality” results in significant spatial differences 

in the transformation and upgrading of manufacturing industries in different regions. 

At the same time, the manufacturing industry has achieved functional division of labor 

and ecological niche expansion similar to ecosystems by introducing digital 

technology, further enhancing its adaptability to complex environments and 

sustainable development capabilities. 
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