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Abstract: By collecting athletes’ basic information, exercise habits, historical injury records 

and sports performance data, this study constructs a random forest (RF) model to assess the 

risk of sports injuries. The model can effectively deal with high-dimensional data and capture 

nonlinear relationships, and has strong generalization ability. The study also defines a risk 

assessment index (RAI) to visually represent the risk level of athletes’ sports injuries. In 

addition, this study identified the specific rehabilitation needs of patients with different injury 

types and degrees through association rule mining technology and cluster analysis, and made 

a personalized rehabilitation plan. In particular, biomechanical data, such as joint stability and 

muscle strength balance, are also included in this study to more accurately assess the risk of 

sports injury and guide rehabilitation training. Through comparative experiments, the results 

show that personalized rehabilitation plan based on big data analysis can significantly shorten 

the rehabilitation cycle and improve the quality of rehabilitation and patient satisfaction. The 

results of this study not only provide scientific sports guidance and rehabilitation suggestions 

for athletes and fitness enthusiasts, but also provide decision support for sports coaches, 

rehabilitation teachers and other professionals, which promotes the development of theory and 

practice in the field of sports injury prevention and rehabilitation. 

Keywords: big data; sports injury; risk assessment; rehabilitation strategy; random forest; 

biomechanics 

1. Introduction 

Sports injury not only affects athletes’ competitive performance and career, but 

also poses a threat to the health of ordinary sports enthusiasts. Therefore, how to 

effectively assess the risk of sports injury and formulate scientific and reasonable 

rehabilitation strategies has become an urgent problem in the field of sports medicine 

and sports science. According to the statistics of the World Health Organization, the 

number of injuries caused by sports in the world is huge every year, which not only 

brings physical pain and economic burden to individuals, but also poses great pressure 

on social medical resources. Therefore, how to effectively prevent sports injuries and 

how to recover quickly and scientifically after injuries have become the key problems 

to be solved urgently in the fields of sports science, medicine and rehabilitation. Big 

data analysis can process massive and multi-dimensional data and mine the laws 

hidden behind the data, which makes it possible to accurately predict the risk of sports 

injuries and customize rehabilitation programs. Compared with traditional research 

methods based on experience or small-scale samples, big data analysis can consider 

individual differences more comprehensively, improve the accuracy of evaluation and 

the effectiveness of rehabilitation strategies. 
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The sports injury assessment model based on big data network can 

simultaneously assess the horizontal and vertical injury risks, and clearly determine 

whether the injury site is a single injury or a compound injury [1]. These models 

complete the construction of the evaluation model through the determination of sports 

injury risk sources, identification of injury risk factors and sports injury evaluation 

based on injury risk factors [2]. Data mining technology plays a key role in sports 

injury prediction. By analyzing a large number of sports data, we can find out the 

potential risk factors of injury and take preventive measures in advance. For example, 

the whole body posture assessment can help rehabilitation workers find out the risk of 

sports injury in patients, such as muscle tension, limited joint activity and poor stability 

[3,4]. Functional Movement Screening (FMS) is a method used to evaluate an athlete’s 

movement capabilities, and it has a certain relationship with the risk of sports injuries. 

By conducting FMS tests on elite athletes and recording instances of sports injuries, 

an FMS database for athletes can be established, thereby assessing the risk of sports 

injuries [5,6]. Research into physical factor-assisted motor and sensory rehabilitation 

represents a current frontier and hot topic. Utilizing physical stimuli such as 

electromagnetic and photoacoustic can modulate neural circuits associated with 

sensorimotor functions, promoting motor and sensory recovery. However, the 

mechanisms of existing physical factor rehabilitation interventions remain unclear, 

and optimal intervention parameters are still under investigation [7]. The study of 

sports injury risk assessment and rehabilitation strategies based on big data analysis is 

a multidisciplinary field that integrates knowledge from sports science, data science, 

rehabilitation medicine, and other areas [8]. Through big data analysis, it is possible 

to more accurately assess the risk of sports injuries and develop more effective 

rehabilitation strategies. 

Age is an important factor that affects the type of sports injury and its impact on 

long-term sports career. Young athletes are in the stage of growth and development, 

and their skeletal and muscular systems are not yet fully mature, making them more 

prone to injuries such as growth plate injuries and ligament strains; However, middle-

aged and elderly athletes are more susceptible to joint degenerative diseases, tendinitis, 

and other injuries due to decreased physical function. These injuries not only affect 

athletes’ immediate performance, but may also limit their ability to participate in 

sports activities in the future [9]. Gender plays an important role in the incidence and 

recovery process of sports injuries. Due to differences in physiological structure and 

hormone levels, female athletes have a higher incidence of certain types of sports 

injuries than males, such as anterior cruciate ligament (ACL) injuries [10]. In addition, 

gender differences are also reflected in the recovery and rehabilitation process after 

injury. Female athletes may need longer recovery time, and there are differences in 

pain management and psychological adjustment during rehabilitation with men. From 

amateur to professional in different levels of sports, sports injury patterns and 

prevention strategies also show changes [11]. Amateur athletes are more prone to acute 

injuries due to unsystematic training and irregular techniques. Professional athletes, 

on the other hand, are more prone to overuse injuries due to long-term high-intensity 

training and competition. It is very important to formulate personalized prevention and 

rehabilitation strategies for athletes with different sports levels, so as to reduce the risk 

of injury, improve sports performance and prolong sports life. 
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In this context, biomechanics, as a discipline to study the mechanical laws of 

objects (including human body), plays an important role in sports injury risk 

assessment and rehabilitation strategies. Biomechanics can help us to understand the 

mechanism of sports injury and identify high-risk factors that may lead to injury by 

analyzing the mechanical characteristics of human movement, such as the magnitude, 

direction, action point and kinematics parameters. For example, through the accurate 

measurement and analysis of joint stress, the possibility of joint injury under specific 

exercise or training mode can be predicted; Using biomechanical model to simulate 

the effects of different rehabilitation training programs is helpful to optimize the 

rehabilitation process, improve the rehabilitation efficiency and reduce the risk of re-

injury. In addition, combined with big data analysis technology, a large number of 

biomechanical data can be deeply mined and analyzed, and potential injury risk 

patterns can be found, providing scientific basis for individualized sports injury 

prevention and rehabilitation. This interdisciplinary research method can not only 

improve the accuracy of sports injury risk assessment and the effectiveness of 

rehabilitation strategies, but also promote the innovative development of sports 

science and sports medicine. 

Although the application prospect of big data in the field of sports injury is broad, 

the current research is still in the initial exploration stage, and there are many 

challenges and shortcomings. For example, how to effectively integrate and clean 

heterogeneous data from different sources, how to choose appropriate big data analysis 

models and algorithms to accurately assess the risk of sports injuries, and how to 

formulate and implement personalized rehabilitation strategies based on the results of 

big data analysis are all issues that need to be explored in depth. Therefore, this study 

explores sports injury risk assessment and rehabilitation strategies based on big data 

analysis, with special emphasis on the key role of biomechanics in this process. By 

integrating biomechanical principles and big data analysis technology, athletes and 

sports enthusiasts can be provided with more accurate and personalized sports injury 

prevention and rehabilitation services, thus ensuring their sports safety and health. 

2. Risk assessment of sports injury based on big data 

2.1. Data source 

Collect the data of 1000 athletes aged between 16 and 35, covering different 

genders and sports, including amateur, semi-professional and professional athletes, to 

reflect the sports injury situation under the diversified training intensity and 

competition frequency. All participants passed the health examination before the start 

of the study to ensure that there were no major chronic diseases or serious previous 

sports injuries. Data sources not only include sports performance records obtained in 

cooperation with sports clubs and national teams, medical records obtained in 

cooperation with sports medical centers, lifestyle information of regular 

questionnaires, and sports and biofeedback data collected in real time through smart 

wearable devices, but also explicitly increase the collection of biomechanical data of 

athletes, such as ground reaction force, joint angle, muscle activity and so on. These 

data are obtained by motion capture system, dynamometer, electromyography and 

other equipment. 
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The study collected the basic information, exercise habits, historical injury 

records, sports performance data and biomechanical data of athletes from multiple 

sources, and ensured the effective use of these information through data preprocessing. 

This process includes data cleaning to remove duplicate, missing or abnormal values; 

Data conversion converts non-numerical data into numerical data; Feature selection 

selects variables highly related to sports injury risk according to statistical analysis, 

and especially emphasizes that biomechanical features, such as maximum joint 

mobility, muscle strength ratio, gait parameters, etc., should be included in the feature 

selection process besides basic information, exercise habits and historical injury 

records. Feature engineering transforms the original biomechanical data into useful 

features for sports injury risk assessment; and standardizing the feature variables to 

optimize the model performance. The data after pretreatment are shown in Table 1. 

Table 1. Pre-processed sports performance index data. 

Participant 

ID 
age gender Sports 

Training 

intensity 

Competition 

frequency 

Past 

injuries 

and 

illnesses 

Ground 

reaction 

force 

(N) 

Joint 

range 

of 

motion 

(°) 

Muscle 

activation 

level (mV) 

The 

fastest 

100 m 

sprint 

time 

(s) 

Maximum 

continuous 

running 

distance 

(m) 

Damage 

occurs 

A001 22 man soccer high high nothing 850 120 50 11.2 5000 no 

A002 28 woman basketball secondary secondary have 700 110 45 12.5 4500 yes 

A003 19 man swim low low nothing 650 130 55   no 

... ... ... ... ... ... ... ... ... ... ... ... ... 

A1000 35 woman 

track and 

filed; 

athletics 

high high have 900 115 60 10.8 6000 yes 

2.2. Construction of risk assessment model 

The sports injury risk assessment model based on big data needs to be able to 

handle high-dimensional data, capture nonlinear relationships and have strong 

generalization ability. Therefore, this study chooses RF (Random Forest) as the risk 

assessment model. RF is an integrated learning method. By constructing multiple 

decision trees and synthesizing their prediction results, it can effectively reduce the 

risk of over-fitting and improve the stability and accuracy of the model [12,13]. The 

principle of RF is shown in Figure 1. 
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Figure 1. RF principle. 

Using the preprocessed data set, the RF model is constructed. RF is an integrated 

model composed of multiple decision trees, and its basic construction formula can be 

expressed as: 

𝑓𝑅𝐹(𝑥) =
1

𝐵
∑ 𝑓𝑏

𝐵

𝑏=1

(𝑥) (1) 

where 𝑓𝑅𝐹(𝑥)  represents the prediction result of RF. 𝐵  represents the number of 

decision trees. 𝑓𝑏(𝑥) represents the prediction result of the 𝑏 decision tree. 

The construction process of decision tree involves extracting samples from the 

original data set by bootstrap sampling to form subsets, and then randomly selecting 

feature subsets at each node to split, and growing trees according to the criteria of 

information gain or Gini impurity until the preset stopping conditions such as 

maximum depth or minimum number of samples are reached [14]. 

In the RF model, each decision tree will classify the samples according to the 

characteristic variables, and finally get the prediction results through the voting 

mechanism. Assuming that the probability of an athlete’s sports injury output by the 

model is P, the sports injury risk can be divided into different levels according to the 

value of P: low risk (P < 0.3), medium risk (0.3 ≤ P < 0.7) and high risk (P ≥ 0.7). 

In order to express the risk assessment results more intuitively, a risk assessment 

index (RAI) is defined, and its calculation formula is as follows: 

RAI = 100 × 𝑃 (2) 

where P is the probability of sports injury predicted by the model. The greater the 

value of RAI, the higher the risk of sports injury. 

The RAI scale is shown in Table 2. The smaller the RAI value, the lower the risk 

of sports injury; The greater the RAI value, the higher the risk of sports injury. 

Through RAI scale, we can intuitively understand the risk level of athletes’ sports 
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injuries, and provide basis for formulating corresponding prevention and rehabilitation 

strategies. 

Table 2. RAI scale. 

RAI value range Risk grade of sports injury 

0 ≤ RAI < 0.3 Low risk 

0.3 ≤ RAI < 0.7 Medium risk 

RAI ≥ 0.7 high-risk 

The parameters of RF model are optimized by grid search method. Grid search is 

an exhaustive method, and the optimal parameters are found by traversing all possible 

parameter combinations [15,16]. The formula can be expressed as: 

𝐵𝑒𝑠𝑡𝑃𝑎𝑟𝑎𝑚𝑠 = argmin
𝜃∈𝛩

 𝐶𝑉𝐸𝑟𝑟𝑜𝑟(𝑓𝑅𝐹(𝑥; 𝜃)) (3) 

where BestParams represents the optimal parameter combination. 𝛩 represents the set 

of all possible parameter combinations. 𝐶𝑉𝐸𝑟𝑟𝑜𝑟(𝑓𝑅𝐹(𝑥; 𝜃)) represents the average 

error of RF model using parameter 𝜃 in cross-validation. 

The performance of the model under different parameter combinations is 

evaluated by cross-validation, and the optimal parameter set is selected. The common 

K-fold cross-validation formula is expressed as: 

𝐶𝑉𝐸𝑟𝑟𝑜𝑟(𝑓𝑅𝐹(𝑥; 𝜃)) =
1

𝑘
∑ 𝐸𝑟𝑟𝑜𝑟(𝑓𝑅𝐹(𝑥𝑖; 𝜃))

𝑘

𝑖=1
 (4) 

where 𝑘  represents the number of folds. 𝑥𝑖  represents the data set of the 𝑖  fold. 

𝐸𝑟𝑟𝑜𝑟(𝑓𝑅𝐹(𝑥𝑖; 𝜃)) represents the error of RF model using parameter 𝜃 on the i -fold 

data set. 

Finally, the optimized parameter set is used to train the RF model. The data set is 

divided into training set and test set, and the accuracy and generalization ability of the 

model are evaluated through the test set. 

The following is the pseudo code of the RF modeling process: 

Initialize RF model: 

Input: training data set D, number of features F, number of trees T, maximum depth of trees M, minimum sample 

splitting number S, and size of random subset k 

 

  Initialize an empty forest collection forest = [] 

 

For 𝑡 = 1 to 𝑇: 

A random subset Dt with the same size as D is obtained by sampling with playback from the data set D. 

  Initialize an empty decision tree 

 

  Building decision tree: 

    Select an optimal feature for segmentation and the optimal segmentation point of this feature 

    Perform the following steps recursively until the stop condition is met (the depth of the node reaches 𝑆 or the 

number of samples of the node is less than 𝑀): 

      𝑘 feature subsets are randomly selected for each feature. 

      Find the optimal segmentation point in the selected feature subset to minimize impurity 

      Segmentation of data sets according to optimal segmentation points 
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      Recursively execute the process of building a decision tree for the segmented subset 

 

  Add the constructed decision tree to forest collection 

 

Model training completed 

 

Model prediction: 

Input: sample 𝑥 to be predicted, RF model forest 

 

  For every tree in forest: 

    Use tree to predict the sample 𝑥, and get a prediction result 

 

  Aggregate the prediction results of all trees to get the final prediction result 

 

Return the final prediction result 

2.3. Model optimization combined with biomechanical characteristics 

In addition to considering the basic information of athletes, such as age, gender, 

sports events, exercise habits, such as training intensity, competition frequency and 

historical injury records, this paper also includes biomechanical characteristics, such 

as ground reaction, joint activity and muscle activation level. These biomechanical 

characteristics are obtained by motion capture system, dynamometer, 

electromyography and other equipment, which can directly reflect the mechanical 

characteristics of athletes in the process of sports. 

In order to effectively integrate biomechanical characteristics with other 

characteristics to evaluate the risk of sports injury, firstly, data preprocessing is carried 

out, including cleaning, transforming and standardizing biomechanical data, and 

converting non-numerical data into numerical data; Secondly, feature selection, using 

statistical methods to select variables highly related to sports injury risk, especially 

those biomechanical features that have made significant contributions to risk 

assessment through correlation analysis and chi-square test; Finally, the feature 

engineering stage, where the original data are transformed into valuable features, such 

as calculating the coefficient of variation of joint activity and statistical data of muscle 

activation level, to better reflect the athletes’ sports patterns and their potential injury 

risks. 

In the RF model, the importance of each feature is measured by calculating the 

information gain or Gini impurity that the feature reduces in the process of model 

splitting. Through feature importance analysis, we can clearly understand which 

biomechanical features have important influence on sports injury risk assessment, thus 

providing scientific basis for model optimization. 

Let 𝑇 be a decision tree, 𝑆 be the training set, 𝑆𝑡 be the subset split by feature 𝑗, 

𝑆𝑡1, 𝑆𝑡2 be the two split subsets, 𝐼𝐺(𝑆, 𝑆𝑡1, 𝑆𝑡2) be the information gain, and 𝑁 be the 

number of trees. 

The importance 𝐼𝑗 of the feature 𝑗 is calculated by the following formula: 

𝐼𝑗 = ∑ (𝐼𝐺(𝑆, 𝑆𝑡1, 𝑆𝑡2) ×
|𝑆𝑡|

(𝑆)
)

𝑁

𝑡=1

 (5) 
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Among them: 

𝐼𝐺(𝑆, 𝑆𝑡1, 𝑆𝑡2) = 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑆) = (
(𝑆𝑡1)

|𝑆|
× 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑆𝑡1) +

(𝑆𝑡2)

|𝑆|
× 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑆𝑡2)) (6) 

For Gini impurity, the calculation formula is: 

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑆) = 1 − ∑ 𝑝𝑘
2

𝑘

𝑘=1
 (7) 

where 𝑝𝑘 is the relative frequency of the class 𝑘 in the set 𝑆. 

For regression problems, the formula for calculating the mean square error (MSE) 

is: 

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑆) =
1

|𝑆|
− ∑(𝑦𝑖 − �̄�𝑖)2

𝑖∈𝑆

 (8) 

where 𝑦𝑖 is the target value of the i -th sample in the set 𝑆, and �̄�𝑖 is the average value 

of the target values in the set 𝑆. 

The importance 𝐼𝑗 of feature 𝑗 is the average value of impurity reduction caused 

by feature 𝑗 in all trees. In practical application, RF algorithm will calculate this value 

for each feature, and then rank the features according to this value, so as to get the 

importance ranking of the features. The result of feature calculation is shown in Figure 

2. 

 

Figure 2. Characteristic calculation result. 

The feature importance score calculated by RF model reveals the role of 

biomechanical features in predicting sports injury risk. These characteristics include 

ground reaction, joint activity, muscle activation level, its coefficient of variation and 
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statistical data, which respectively reflect the impact force, joint activity range, muscle 

activity degree and fluctuation of athletes. The importance score of a feature is 

measured based on its reduced information gain or Gini impurity in the model. The 

higher the score, the more critical the feature is to prediction. 

In order to improve the accuracy of overall risk assessment, a separate prediction 

model based on biomechanics is constructed and integrated with RF model. A gait 

analysis model based on neural network is proposed, which can predict the risk of 

sports injury by analyzing the gait data of athletes. 

The gait analysis model based on neural network is selected as the biomechanical 

prediction model (Figure 3). The model can deal with complex nonlinear relationships 

and capture subtle changes in gait data, thus accurately predicting the risk of athletes’ 

sports injuries. Gait data are preprocessed to extract features related to sports injury 

risk, such as step size, step frequency, gait symmetry and so on. These features will be 

used as the input of the neural network model. 

 

Figure 3. Gait analysis model structure based on neural network. 

The neural network model is trained by using the preprocessed gait data, and the 

model performance is optimized by adjusting the model parameters. At the same time, 

cross-validation and other methods are used to evaluate the generalization ability of 

the model. The trained neural network model is fused with the RF model, and the 

fusion strategy adopts the weighted average method. 

2.4. Model verification and application 

The set-aside method is used to divide the data set into training set and test set, 

in which the training set is used for model training and the test set is used for model 

verification. The data of the test set is unknown in the process of model training, so 

the generalization ability of the model can be objectively evaluated [17]. Input the test 

set data into the trained RF model to obtain the prediction results of each sample. 

By calculating the confusion matrix, the accuracy, precision, recall and F1 score 

of the model are obtained. Table 3 shows four key performance indicators of model 

verification. The accuracy rate of 85% indicates that the prediction accuracy rate of 

the model is 85%. Precision92% shows that the model has high accuracy in predicting 
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positive classes; The recall rate of 78% indicates that the recognition ability of the 

model for all positive samples is relatively low, and there are cases of missed diagnosis; 

The F1 score of 84% is the harmonic average of precision and recall rate, which 

reflects that the overall performance of the model is good but there is still room for 

improvement, especially in improving the recall rate to enhance the recognition ability 

of positive samples. 

Table 3. Model verification results. 

index value 

Accuracy 0.85 

Precision 0.92 

Recall 0.78 

F1 Score 0.84 

K-fold cross-validation method is used to evaluate the generalization ability of 

the model. In this method, the data set is randomly divided into k subsets. In each 

iteration, k-1 subsets are used as training data, and the remaining subset is used as test 

data. This process is repeated for k times, and finally the average of k results is taken 

as the estimation of model performance. The results of K-fold cross-validation are 

shown in Table 4. 

Table 4. K-fold cross-validation results. 

Fold number Accuracy precision Recall F1 Score 

1 84.5% 91.8% 77.5% 83.6% 

2 86.2% 92.5% 79.1% 84.8% 

3 85.8% 91.2% 78.3% 84.0% 

4 83.9% 92.3% 76.8% 83.1% 

5 85.1% 91.6% 77.9% 83.5% 

Table 4 shows that the performance of the model is relatively stable in 5 

iterations in K-fold cross-validation. The accuracy rate is maintained between 84% 

and 86%, with an average of 85%; Precision ranges from 91.2% to 92.5%, with an 

average of 92%; The recall rate is between 76.8% and 79.1%, with an average of 78%, 

indicating that there is a certain situation of missed diagnosis; F1 scores ranged from 

83.1% to 84.8%, with an average of 84%. The model performs well in accuracy and 

precision, but there is still room for improvement in improving the recall rate to better 

identify positive samples. 

The Receiver Operating Characteristic (ROC) curve and the Area Under the 

Curve (AUC) are used to evaluate the classification performance of the model across 

different thresholds. The closer the ROC curve is to the upper left corner, and the larger 

the AUC value, the higher the reliability of the model. Figure 4 shows the ROC curve 

of the model, with an AUC value of 0.92, indicating a high level of model reliability. 
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Figure 4. ROC curve of the model. 

During exercise, the head and neck are less stressed and are not the main stress 

parts; However, the shoulders, elbows, spine, hips, knees and ankles are under great 

pressure, especially when the arms are used frequently and involve twisting, bending 

and load-bearing movements. The wrist is moderately stressed, depending on whether 

it is necessary to hold the instrument. This stress distribution shows (see Figure 5) 

that some parts such as shoulders, elbows, spine, hips, knees and ankles may face 

higher risk of injury, so special attention should be paid to the protection and targeted 

training of these high-risk parts in training and competition to reduce the possibility 

of injury. 

 

Figure 5. The stress situation of athletes in different parts during the competition. 
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Input the newly collected athlete data into the model, calculate the probability of 

each athlete’s sports injury, and divide the athletes into three levels according to RAI: 

low risk, medium risk and high risk. The results of risk assessment and grading of 

athletes are shown in Table 5. According to the data table, athletes are divided into 

three risk grades according to the RAI value: athletes with low risk (RAI value close 

to 0) have ID numbers of 5 and 7, and can train as planned but need continuous 

monitoring; Athletes with medium risk (RAI value 0.3 to 0.7) have ID 1, 4, 6, 8 and 

10, so it is suggested to adjust the training plan and strengthen preventive measures; 

Athletes with high risk (RAI close to 1) have ID numbers of 2, 3 and 9, so it is 

necessary to immediately reduce the amount of exercise and take professional 

rehabilitation and other intervention measures to prevent sports injuries. 

Table 5. Risk assessment and grading results of athletes. 

Athlete 

ID 
age gender Sports 

Training 

hours per 

week 

Exercise 

years 

Past 

injury 

times 

Time of last 

injury 

(month) 

Maximum 

speed (m/s) 

Maximum 

endurance time 

(min) 

RAI risk level 

1 30 man swim 18.05 5 0 7 6.86 33.73 0.67 
Medium 

risk 

2 33 woman run 19.68 8 4 9 4.60 41.18 0.97 high-risk 

3 18 man swim 16.99 4 1 3 2.31 26.90 0.88 high-risk 

4 21 woman run 11.92 3 4 6 7.07 43.74 0.51 
Medium 

risk 

5 21 woman soccer 16.71 8 1 23 9.67 25.86 0.06 Low risk 

6 25 man run 6.77 3 2 11 7.22 48.92 0.45 
Medium 

risk 

7 27 man soccer 14.60 1 2 14 7.08 57.48 0.02 Low risk 

8 22 woman swim 7.15 1 0 18 9.96 43.13 0.44 
Medium 

risk 

9 24 woman basketball 19.17 5 1 0 6.65 10.68 0.98 high-risk 

10 30 woman soccer 12.83 6 1 14 5.31 41.14 0.36 
Medium 

risk 

Based on the results of risk assessment, individualized prevention strategies are 

formulated for athletes with different risk levels, especially for high-risk athletes. By 

analyzing their exercise habits and historical injury records, targeted measures such as 

strengthening specific muscle training, improving techniques and adjusting equipment 

are formulated. In addition, the dynamic monitoring and adjustment mechanism is 

implemented, the risk assessment is updated regularly and the prevention strategy is 

optimized according to the latest data to ensure its effectiveness and accuracy. In 

practical application, a professional sports team uses RF model for risk assessment, 

and takes preventive measures for high-risk athletes, including knee stability training 

and running posture adjustment, which ultimately significantly reduces the incidence 

of sports injuries and improves the overall performance of athletes. 

The RF model based on big data analysis in this study shows high accuracy and 

reliability in sports injury risk assessment, which can provide athletes with 

personalized risk assessment results and prevention strategies, and is of great 
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significance for reducing the incidence of sports injuries and improving athletes’ 

sports performance. 

3. Rehabilitation strategy optimization based on big data 

3.1. Analysis of rehabilitation needs based on biomechanics 

In the analysis of rehabilitation demand based on biomechanics, the parameters 

such as joint stability and muscle strength balance are focused on to identify the key 

points in the rehabilitation process, and the relationship between biomechanical 

characteristics and rehabilitation demand is analyzed through association rule mining 

technology, which provides the basis for personalized rehabilitation plan [18]. Collect 

and classify a large number of data from hospitals and sports rehabilitation centers, 

including different types of sports injuries (such as muscle strain, ligament tear, etc.), 

injury degree, age, gender, weight and exercise habits of patients, so as to count 

common symptoms and recovery cycles, and analyze high-risk factors. Through 

cluster analysis of patients, we can identify groups with similar rehabilitation needs, 

such as acute injury of young athletes and chronic injury of the elderly. Finally, 

according to these analysis results, the specific rehabilitation needs of different types 

and degrees of injuries are determined, including physical therapy, nutritional 

intervention and psychological rehabilitation, and the core role of biomechanical 

evaluation in formulating rehabilitation strategies is emphasized to ensure that the plan 

not only targets at the injury itself, but also optimizes the biomechanical characteristics 

of patients. 

3.2. Biomechanics-guided rehabilitation planning 

Based on the evaluation of joint mobility and muscle strength, targeted 

rehabilitation actions such as stretching and strength training are designed, and 

biomechanical monitoring technology (such as wearable devices) is introduced to 

track the patient’s rehabilitation progress in real time to ensure timely adjustment of 

the plan. Personalized rehabilitation strategies cover physical therapy, nutritional 

intervention and psychological rehabilitation, and use big data analysis to meet 

individual needs. Customize the physical therapy plan by evaluating the type and 

degree of injury, and predict the effect of patient response optimization; Provide 

personalized dietary advice according to nutritional status; Assess mental state, 

identify risks and intervene in advance. Biomechanical evaluation plays a central role 

in physical therapy, ensuring the safety and effectiveness of rehabilitation actions, and 

dynamically adjusting the plan with real-time monitoring technology in order to 

achieve the best rehabilitation effect. Integrate these three aspects of comprehensive 

rehabilitation programs, continuously track and adapt to patients’ recovery through the 

big data platform, and provide all-round support. 

3.3. Evaluation of strategy effect 

In order to evaluate the effectiveness of the optimized rehabilitation strategy, a 

comparative experiment was designed, and 60 patients were randomly divided into 

two groups: the experimental group adopted a personalized rehabilitation plan based 
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on big data analysis, while the control group followed the traditional rehabilitation 

method. By setting rehabilitation cycle, recovery quality and patient satisfaction as 

evaluation indicators, data including rehabilitation progress, symptom improvement 

and patient feedback were collected regularly, and the rehabilitation effects of the two 

groups were analyzed and compared by statistical methods to determine whether the 

optimized strategy significantly improved rehabilitation efficiency and patient 

satisfaction. 

The results showed that the average recovery period of the experimental group 

was 45.6 days and the standard deviation was 12.3 days, which was shorter and more 

concentrated than the average recovery period of 60.8 days and the standard deviation 

of 15.4 days in the control group. The median of 43 days in the experimental group is 

also lower than that in the control group, with the minimum and maximum values of 

30 days and 70 days respectively. Compared with the control group’s 45 days to 90 

days, it shows that the experimental group not only has a shorter average and median 

rehabilitation cycle, but also has a smaller range of rehabilitation cycles, and the 

overall rehabilitation performance is more consistent and efficient. The statistical 

results of rehabilitation cycle are shown in Table 6. 

Table 6. Statistical results of rehabilitation cycle of experimental combination control group. 

group 
Average recovery period 

(days) 

Standard deviation 

(days) 

Median 

(days) 

Minimum value 

(days) 

Maximum value 

(days) 

Experimental 

group 
45.6 12.3 43 30 70 

Control group 60.8 15.4 62 45 90 

The patients in the experimental group performed better than those in the control 

group in terms of functional recovery, pain relief and motor ability recovery after 

rehabilitation, indicating that personalized rehabilitation plan is more conducive to 

patients’ comprehensive recovery. Through the investigation of patients’ satisfaction, 

the satisfaction of patients in the experimental group was significantly higher than that 

in the control group, reflecting that the individualized rehabilitation plan better met 

the rehabilitation needs of patients (Table 7). 

Table 7. Statistical results of patient satisfaction in experimental combination control group. 

group 
Average satisfaction 

score 

Standard deviation 

(days) 

Median 

(days) 

Minimum value 

(days) 

Maximum value 

(days) 

Experimental 

group 
4.3 0.8 4.5 3.0 5.0 

Control group 3.6 1.2 3.7 2.0 5.0 

According to the data provided, the average score of patients’ satisfaction in the 

experimental group was 4.3, the standard deviation was 0.8, and the median was 4.5. 

Compared with the average score of 3.6, the standard deviation was 1.2 and the median 

score was 3.7 in the control group, it showed higher satisfaction and the score was 

more centralized and consistent. The satisfaction score range of the experimental 

group (3.0–5.0) is also narrower than that of the control group (2.0–5.0), which further 
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shows that the satisfaction of the patients in the experimental group is not only higher, 

but also less varied and more stable as a whole. 

For some specific types of sports injuries (such as muscle strain, ligament tear, 

etc.), the rehabilitation effect of patients in the experimental group is particularly 

significant, indicating that the personalized rehabilitation plan is more targeted for 

such injuries. Although the individualized rehabilitation plan may involve more data 

analysis and customized services, in the long run, the overall rehabilitation cost of 

patients in the experimental group may be lower than that of the control group due to 

the improvement of rehabilitation efficiency and the shortening of rehabilitation cycle. 

4. Discussion  

Through the analysis method based on big data, this study deeply explored the 

risk assessment and rehabilitation strategy of sports injury. The research results show 

that after the individualized rehabilitation plan based on big data analysis is adopted 

in the experimental group, the rehabilitation cycle is significantly shortened, the 

quality of rehabilitation is significantly improved, and the patient satisfaction is also 

greatly improved. These results fully prove the significant advantages of big data 

analysis in sports injury risk assessment and rehabilitation strategies. 

Big data analysis can integrate massive data from multiple sources, including 

patients’ exercise habits, physiological indicators, historical injury records, etc., which 

provides a rich foundation for building an accurate risk assessment model. By mining 

the potential association between these data, high-risk groups and individuals can be 

identified more accurately, so as to take preventive measures in advance and reduce 

the probability of sports injuries [19]. At the same time, big data analysis can also 

customize personalized rehabilitation plans according to the specific conditions of 

patients to ensure the pertinence and effectiveness of rehabilitation measures. Big data 

analysis also played an important role in the formulation of rehabilitation strategies. 

By monitoring the patients’ rehabilitation progress in real time, the rehabilitation plan 

can be adjusted in time to meet the patients’ recovery needs. In addition, big data 

analysis can also predict the rehabilitation trend of patients and provide scientific 

decision support for doctors, thus improving the rehabilitation efficiency and the 

quality of life of patients. By combining biomechanical characteristics, such as joint 

stability and muscle strength balance, high-risk groups and individuals can be 

identified more accurately, and then more scientific and reasonable prevention and 

rehabilitation strategies can be formulated. Biomechanics research not only helps to 

understand the mechanism of sports injury, but also guides the design of rehabilitation 

training to ensure the safety and effectiveness of training. 

Biomechanics research has broad application prospects in the field of sports 

injury prevention and rehabilitation, but it also faces some challenges. For example, 

how to collect and analyze biomechanical data more accurately, how to effectively 

translate biomechanical knowledge into clinical application, and how to overcome 

technical and cost obstacles so that the achievements of biomechanical research can 

benefit more athletes and ordinary people. Future research needs to continue to explore 

these issues in order to give full play to the potential of biomechanics in the prevention 

and rehabilitation of sports injuries. 
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This study provides scientific basis for sports injury risk assessment and 

rehabilitation strategy through big data analysis, which has the following practical 

significance: First, the model can identify high-risk athletes and potential injury types, 

and help coaches and trainers implement preventive measures in training plans; 

Secondly, support the formulation of individualized training and rehabilitation 

programs, adjust the intensity and recovery strategies according to individual 

conditions, improve the training effect and accelerate rehabilitation; Furthermore, 

provide decision support for health care professionals, assist in accurate diagnosis, 

treatment and monitoring rehabilitation progress; Finally, the research findings can be 

incorporated into education and training courses to improve the ability of future 

professionals to cope with sports injuries. These applications not only help to enhance 

the health and performance of athletes, but also provide strong support for relevant 

professionals and promote the overall progress of the sports industry. 

Although this research has achieved remarkable results, there are still some 

limitations and challenges. Data quality is a key factor affecting the analysis effect of 

big data. In practical application, problems such as missing data, wrong data or 

inconsistent data may be encountered, which will affect the accuracy of risk 

assessment and the effectiveness of rehabilitation strategies. Therefore, how to 

improve the data quality and ensure the accuracy, integrity and consistency of the data 

is a problem that needs to be focused on. The generalization ability of the model is 

also a big challenge [20]. Although we have constructed effective risk assessment 

models and rehabilitation strategies in this study, whether these models and strategies 

can maintain the same effect in different groups of people and different sports still 

needs further verification and optimization. In order to improve the generalization 

ability of the model, it is necessary to collect more diversified data and adopt more 

advanced algorithms and technologies to build the model. Privacy protection and 

ethical issues are also challenges that big data analysis cannot ignore in sports injury 

risk assessment and rehabilitation strategies. When collecting, processing and using 

patient data, we must strictly abide by relevant laws, regulations and ethical norms to 

ensure that the privacy of patients is fully protected. 

Future research directions include constructing a refined risk assessment model 

integrating multi-dimensional data such as genetics and psychology to improve the 

accuracy and pertinence of the assessment; Develop an intelligent rehabilitation 

system combining artificial intelligence and internet of things technology to realize 

real-time monitoring and personalized guidance of patients’ rehabilitation progress 

and improve rehabilitation efficiency and quality of life; Explore the fusion analysis 

method of cross-disciplinary data such as sports science, medicine and biomechanics, 

deeply understand the mechanism of sports injury, and provide scientific support for 

risk assessment and rehabilitation strategies; At the same time, strengthen the research 

on privacy protection and ethical norms to ensure that the rights and interests of 

patients in big data applications are fully guaranteed. 

5. Conclusion  

By using the big data analysis method, the study deeply explored the risk 

assessment and rehabilitation strategy of sports injury. The research shows that the 
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risk assessment of sports injury by using RF model has high accuracy and reliability, 

and can provide personalized risk assessment results and preventive strategies for 

athletes, significantly reducing the incidence of sports injuries and improving athletes’ 

sports performance. In addition, the optimization of rehabilitation strategy based on 

big data shows that the rehabilitation period of patients in the experimental group is 

significantly shortened, and the quality of recovery and patient satisfaction are greatly 

improved after receiving personalized rehabilitation plan. These achievements fully 

prove the significant advantages of big data analysis in sports injury risk assessment 

and rehabilitation strategies. This study also emphasizes the importance of 

biomechanical research in sports injury risk assessment and rehabilitation strategy 

formulation. By integrating biomechanical data, such as joint stability and muscle 

strength balance, high-risk groups and individuals can be identified more accurately, 

so as to formulate more scientific and reasonable prevention and rehabilitation 

strategies. Biomechanics research not only enhances the accuracy of risk assessment, 

but also provides a scientific basis for the design of rehabilitation training, ensuring 

the safety and effectiveness of training. However, despite remarkable achievements, 

there are still some limitations and challenges in this study. Data quality, model 

generalization ability, privacy protection and ethical issues are issues that need to be 

focused on. In addition, the collection and analysis of biomechanical data also face 

technical challenges, and further research and innovation are needed to overcome 

these obstacles. Future work will be devoted to solving these problems, so as to further 

improve the accuracy and effectiveness of sports injury risk assessment and 

rehabilitation strategies. 

In our research, it is suggested that future research can include the following 

aspects: 

1) Carry out long-term follow-up research to monitor the changes of sports injury 

risk of athletes in different training stages and competition cycles. This will help 

to verify the stability and accuracy of our model in practical application. 

2) Expand the research scope, including athletes from different regions and different 

sports, so as to improve the universality and representativeness of the research 

results. 

3) Explore the use of deep learning techniques, such as Convolutional Neural 

Network (CNN) and Recurrent Neural Network (RNN), to process complex 

sports data, so as to improve the accuracy of sports injury risk assessment. 

4) Based on the results of big data analysis, customize a personalized rehabilitation 

program for each athlete to minimize the risk of re-injury. 

5) Combined with the physiological, psychological and social factors of athletes, 

the prevention strategies are optimized to reduce the incidence of sports injuries. 
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