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Abstract: This paper investigates attention fatigue detection and multi-grain emotional AI 

classification for student mental health through an educational brain-computer interface (BCI), 

with a focus on integrating biomechanical principles to enhance understanding and application. 

Recognizing the growing importance of students’ mental health and well-being, this study 

introduces a domain generalization approach in transfer learning to improve cross-subject BCI 

model accuracy, addressing the challenges of individual variability. The proposed model 

utilizes only seven electrodes and achieves a 90% accuracy rate in differentiating between two 

cognitive-behavioral tasks. A truncated weighting algorithm is employed to optimize electrode 

combinations, enabling effective generalization across subjects. To tackle the practical 

challenges of emotion recognition in educational settings, the study reduces data sampling 

points by identifying key brain regions and frequency bands associated with emotions. 

Machine learning algorithms, including support vector machines (SVM), Bayesian networks, 

and K-nearest neighbor (KNN), further enhance recognition accuracy. By integrating eye 

movement and electroencephalography (EEG) signals using deep canonical correlation 

analysis, the model achieves cumulative accuracy improvements of 15% and 12% compared 

to unimodal EEG and eye movement data, respectively, across 12 subjects. Incorporating 

biomechanical principles, the study also examines the mechanical properties of neural tissues 

and their influence on signal propagation. By analyzing the viscoelastic behavior of brain tissue 

and its impact on EEG signal transmission, the research provides insights into how mechanical 

stress and strain affect neural activity. This biomechanical perspective enhances the 

understanding of individual variability in EEG signals and contributes to the development of 

more robust and personalized BCI models. The integration of biomechanics with AI-driven 

emotion classification and attention fatigue detection offers a comprehensive approach to 

improving student mental health and educational outcomes. This fusion approach demonstrates 

superior performance in both emotion classification and attention fatigue detection, offering 

substantial potential for real-time interventions in student mental health and the enhancement 

of educational outcomes. 

Keywords: brain-computer interface; attention fatigue detection; biomechanics; student 

mental health; emotion recognition; AI classification; educational BCI 

1. Introduction 

Emotions are integral to human experience, serving as continuous or discontinuous 

responses to internal and external stimuli and playing a crucial role in the survival of 

living beings. Typically, emotions are short-lived yet complex, involving verbal, 

physical, and behavioral responses that significantly influence an individual’s daily life, 

including social interactions. From a medical perspective, assessing a patient’s 

emotional state during treatment or hospitalization can significantly aid recovery and 
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guide effective treatment planning [1]. Furthermore, portable emotion recognition 

technology with communication capabilities can facilitate real-time detection of 

emotional states, improving mental health monitoring [2]. 

Non-verbal cues, such as head posture and eye gaze, are critical forms of 

communication, especially in specific contexts. For example, commercial companies 

analyze consumers’ attention and feedback using gaze tracking, researchers measure 

child development using head posture estimates, and car manufacturers monitor drivers’ 

head posture and gaze to develop advanced driver assistance systems. In educational 

settings, tracking students’ attention can help improve teaching quality [3,4]. However, 

despite progress in gaze and head pose estimation, real-world factors such as lighting 

changes, occlusion, and motion blur continue to challenge algorithm performance [5]. 

Emotion computing research typically focuses on three main areas: emotion 

recognition, emotion expression, and emotional decision-making. Among these, 

emotion recognition is the most critical as it enables machines to accurately understand 

a human’s emotional state. This process often involves analyzing behavioral or 

physiological signals, such as electroencephalography (EEG), both of which convey 

valuable emotional information [6]. Behavioral signals, often expressed 

subconsciously, are a primary means of communicating emotions and feelings to 

others. They are direct, convenient, and require minimal equipment [7]. 

Among physiological signals, EEG is one of the most reliable methods for 

emotion recognition, as it directly reflects brain activity. Emotions are mental 

responses generated by the brain in reaction to external stimuli, and distinct emotions 

produce unique EEG signals across various cortical regions. Therefore, EEG 

objectively represents emotional states [8]. While EEG suffers from poor spatial 

resolution—requiring numerous electrodes to be placed on the scalp—it offers 

excellent temporal resolution, making it suitable for studying changes in emotional 

states over time [9]. Modern wireless EEG devices, being non-invasive, portable, and 

practical, add value to real-world applications in emotion recognition, particularly in 

brain-computer interfaces (BCIs) [10]. 

Feature extraction is critical in emotion recognition, as it involves isolating 

meaningful information from EEG signals for classification purposes. Due to the high 

dimensionality of EEG data, direct processing is challenging. Extracting key features to 

create vectors simplifies emotion classification tasks [11]. Emotions arise from synergistic 

activity across the cerebral cortex, limbic system, and subcortical processes [12]. 

Therefore, EEG-based emotion recognition must account for these synergistic 

relationships between brain regions. Traditional feature extraction methods often rely 

on single-lead electrodes, overlooking spatial correlations between electrodes. 

Recently, convolutional neural networks (CNNs) have been utilized to extract spatio-

temporal features, enhancing model performance [13]. 

In deep neural network-based emotion recognition, spectral maps are frequently 

used for feature extraction. CNNs trained on temporal and frequency axes significantly 

enhance accuracy by merging information from both axes and feeding it into long 

short-term memory (LSTM) networks [14]. Significant advancements have been made 

in emotion recognition and fatigue detection, employing a variety of monitoring 

methods and channels. While EEG-based approaches are considered objective, 

alternative methods continue to drive innovation [15]. 
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In ergonomics, muscle fatigue detection is another important application. Fatigue 

is often assessed by comparing surface electromyography (sEMG) data with 

maximum voluntary contraction capacity [16]. In human-computer interaction (HCI), 

hybrid systems combining multiple modalities, such as EEG and sEMG, have proven 

effective for control purposes [17]. Hybrid modalities leverage the distinct time-

frequency characteristics of EEG signals to improve control [18]. Additionally, EEG 

can mitigate the adverse effects of muscle fatigue in sEMG systems [19]. 

Head pose estimation is another critical component of computer vision that shares 

methodologies with other vision tasks. Feature extraction from facial images typically 

employs local and global approaches. However, global feature extraction methods are 

prone to performance degradation due to occlusion or lighting changes, while local 

methods require high-quality images [20]. In recent years, the availability of diverse 

head pose datasets has facilitated algorithm training and testing, yet real-world 

performance remains a challenge [21–27]. 

This paper investigates the use of EEG and other bioelectrical signals for emotion 

recognition and attention fatigue detection, with a particular focus on educational 

brain-computer interfaces. The following sections review existing research, describe 

the proposed model, present experimental results, and conclude with a summary of 

key findings. 

2. Brain-computer interface attention fatigue detection for mental 

health multi-grain emotional AI classification analysis 

2.1. Brain-computer interface attention detection design 

In the human brain, billions of neurons maintain electrical charges. Membrane 

transporter proteins polarize and charge neurons, facilitating the continuous exchange 

of ions with the extracellular environment. Similarly charged ions repel each other, 

and when many neurons simultaneously release ions, the resulting movement of 

surrounding ions can be driven by repulsion. This iterative process is known as volume 

conduction. If a person is wearing an EEG cap, the ion waves generated through 

volume conduction can push electrons within the metal electrodes as they reach the 

scalp. By measuring the potential difference between any two electrodes, a 

corresponding voltage map can be created. This time-transformed map of voltage 

differences constitutes the electroencephalogram (EEG) [28]. 

The potentials generated by a single neuron are too small to be detected by EEG. 

Therefore, EEG signals always reflect the summed and synchronized activity of 

thousands or millions of neurons with similar spatial orientation [29]. Because the 

gradient of the voltage field decreases with the square of the distance, activity 

originating from deep brain regions is more challenging to detect than currents near 

the skull. Scalp EEG recordings display oscillations across various frequency bands. 

Each frequency band corresponds to specific intervals and is associated with different 

brain states and functions [30]. 

Research measuring EEG signals and neuronal spiking has revealed a complex 

relationship between the two. Among these findings, EEG power in the Gamma band 
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and phase in the Theta band have been shown to correlate most strongly with neuronal 

spiking activity, as illustrated in Figure 1 [31]. 
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Figure 1. EEG signal. 

After the EEG signal features are extracted, the next step is the pattern 

recognition of the feature signals. A machine learning algorithm is used to classify the 

extracted feature values, and the classification accuracy represents the success of the 

analysis results. EEG signals, which refer to the electrical signals collected from the 

brain cortex, are susceptible to interference from non-cortical sources, commonly 

referred to as noise. Noise in EEG signals generally comes in three forms: ocular, 

cardiac, and electromyographic noise, along with interference from the external 

environment. Among these, interference caused by blinking movements is particularly 

prominent [32]. Attempts to reduce such interference involve minimizing eye and 

surrounding tissue movement, yet blinking occurs several times a minute, and eye 

rotation is inevitable, severely affecting the quality of the EEG signal [33]. 

The neurobiological explanation of human emotion, particularly concerning the 

relationship between the nervous system and the limbic system, posits that emotions are 

pleasurable or non-pleasurable states originating in the limbic system of mammals [34]. 

If mammals are considered separately from reptiles, emotions become more distinctive 

in mammals, largely influenced by neurochemicals such as dopamine, norepinephrine, 

and serotonin, which modulate brain activity levels. These chemical changes are often 

reflected through body movements, gestures, and postures [35]. For example, 

emotional states such as love, particularly in terms of care, feeding, and offspring 

rearing, were proposed as central to mammalian emotional expressions, which 

developed in older cortical regions. As nocturnal mammals emerged, the sense of 

smell replaced vision as the dominant sensory input, and the different response 

patterns triggered by smell are thought to have evolved into mammalian emotions and 

emotion-related memories [36]. 

The mammalian brain’s reliance on olfactory input is believed to have provided 

a significant evolutionary advantage, particularly over reptiles during nocturnal hours. 

The large olfactory bulbs in mammals likely facilitated the development of the limbic 

system, a key component in processing emotions [37]. The mammalian brain’s ability 

to dominate in nocturnal conditions is attributed to these enlarged olfactory pathways, 



Molecular & Cellular Biomechanics 2025, 22(3), 1049.  

5 

which formed the basis of the neural networks that later developed into the limbic 

system and contributed to the evolution of complex emotional responses. 

As shown in Figure 2, electromyography (EMG) signals assess muscle function 

by recording signals from electrodes placed on the skin surface. These electrodes can 

be classified into wet and dry electrodes based on the conductive medium used. Wet 

electrodes, similar in material and structure to EEG electrodes, include a pre-prepared 

conductive paste that can be directly applied near the muscles to be recorded during 

experiments. To ensure stable contact and meet the high input resistance requirements 

of the acquisition system, the skin is usually cleaned before placing wet electrodes. On 

the other hand, dry electrodes, with higher input impedance, are not affected by skin-

electrode contact resistance during acquisition, making them more convenient for 

usage [38,39]. Electrodes can also be categorized as resistive or capacitive, based on 

how they couple with the skin. Capacitive electrodes, while easier to apply, tend to 

generate more noise, requiring the addition of analog filtering circuits to improve 

signal quality during acquisition [40]. 
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Figure 2. sEMG signal generation and linear system structure. 

In terms of data analysis, EMG signal features can be classified into first-order 

to fourth-order statistics. First-order statistics include basic statistical measures such 

as the arithmetic mean, absolute mean, and waveform length. Second-order statistics 

represent the variability in the signal, encompassing parameters such as variance, the 

number of waveform sign changes, and energy percentage. Third-order statistics, such 

as skewness, describe the asymmetry in the signal’s distribution, while fourth-order 

statistics, such as kurtosis, describe the sharpness of the signal peaks [41,42]. 

The absolute value means MAVk is estimated by summing up the absolute values 

of all points xi in the kth sEMG signal segment and dividing them by the length N of 

the segment, which is calculated as shown in Equation (1). 

𝑀𝐴𝑉𝑘 =
1

𝑁
∑𝑥𝑖

2

𝑁

𝑖=1

 (1) 

The human body is a bad conductor, and the human body resistance is equated to 

𝑅1 with a resistance of approximately 2 kΩ to 20 MΩ. The input impedance of the 
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acquisition system is 𝑅in, and if the signal collected from the skin surface is 𝑉EMG, the 

sEMG signal 𝑉in entering the acquisition system is: 

𝑉in = 𝑉EMG ×
𝑅in
2

𝑅in + 𝑅1
 (2) 

According to the limit theorem, an input signal close to the original signal can be 

extracted only when the input impedance tends to infinity [43]. In practice, the input 

impedance of the sEMG signal amplifier must be at least two orders of magnitude 

greater than the electrode-skin impedance, and an input impedance greater than 100 

MΩ is generally considered ideal [44]. 

Differential mode interference in the system requires the design of analog 

filtering circuits to eliminate it. Both hardware circuits and software algorithms use a 

high-pass filter with a 3 dB cutoff frequency in the range of 10–20 Hz and a low-pass 

filter with a 3 dB cutoff frequency in the range of 400–450 Hz to avoid losing useful 

information during the processing of sEMG signals [45]. The offline system design 

uses the AD8626 chip to build the analog filter. Considering system power 

consumption and design cost, the fourth-order Butterworth low-pass filter and the 

second-order high-pass filter are selected for this study [46]. Additionally, the highly 

integrated active filter UAF42 is used to form a dual T-shaped 50 Hz interference filter 

circuit, which effectively reduces interference from the power line frequency [47,48]. 

2.2. Analysis of mental health multi-granularity affective AI classification 

model design 

These 3 feature vectors were averaged and used as the baseline signal differential 

entropy features of the subject before each viewing of a particular emotional video. 

Finally, the difference between the differential entropy feature of the experimental 

signal (the EEG signal generated when the subject is stimulated by the emotional 

video) and the differential entropy feature of the baseline signal is used to represent 

the emotional state feature of each EEG segment. This process can be expressed as in 

Equation (3).  

final_𝑣𝑗
𝑖 = exper_𝑣𝑗

𝑖 +
∑ base_𝑣𝑘

𝑖3
𝑘=1

4
 (3) 

where exper_𝑣𝑗
𝑖 denotes the differential entropy feature vector of the EEG signal in 

frequency band in the j-th experimental signal fragment; base_𝑣𝑘
𝑖  denotes the 

differential entropy feature vector of the EEG signal in frequency band 𝑖 in the k-th 

baseline signal fragment; final_𝑣𝑗
𝑖  is the final emotional state feature vector after 

considering the baseline signal. 

In image tracking of a window for a face target in the next video frame search 

image, the parameters of the current video frame search window are reset and 

initialized using the second-order value of the obtained search window with the 

second-order moment of the search window as: 

𝑀11 =∑ ∑ 𝑥𝑦𝐼(𝑥, 𝑦),𝑀20
𝑦𝑥

 (4) 
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The collected material needs to be screened through multiple clips. Since the 

Valence-Arousal two-dimensional affective model was chosen for this experiment, the 

classification of affective states is determined based on different values of Arousal and 

Valence. To ensure high-quality emotional evocation, clips with low recognition are 

removed, and only those with strong emotional impact are selected. Each video clip is 

evaluated along two dimensions: Arousal and Valence. Both Arousal and Valence 

have 9 possible values, with Valence value 1 representing the lowest level of pleasure 

and Valence value 9 representing the highest. Meanwhile, Arousal value 9 represents 

the highest level of Arousal, and Arousal value 1 represents the lowest [49]. 

For classification purposes, clips where both Valence and Arousal values exceed 

5 are considered to evoke a positive affective state. The assessment results from each 

participant involved in screening the emotional material are compiled. Only those clips 

with significant emotional evocation and the highest consistency among participants 

are retained as the final experimental material, as illustrated in Figure 3 [50,51]. 
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Figure 3. Emotion recognition for different features. 

Classification accuracy is the most used evaluation metric when evaluating 

classification tasks, but in the case of unbalanced data distribution, the accuracy may 

not objectively reflect the performance of the classifier. When the classification has 

different error generations, the accuracy only ensures the minimum number of errors, 

but not the minimum total cost. In various applications of classification, where 

classifiers are required to prove their reliability, accuracy has been shown to have some 

shortcomings and deficiencies in current applications. The confusion matrix can 

schematically visualize the classification results and is used to represent the 

relationship between the actual and predicted categories of the test data. 

The principal component analysis first calculates the correlation matrix of the 

variable matrix, and the cumulative variance contribution ratio is calculated from the 

correlation matrix eigenvalues ji to replace the variance to measure the amount of 

information carried, and the principal components are determined by the eigenvectors 

of the correlation matrix. Let p n-dimensional characteristic variables constitute the 

original data matrix 𝑋. The calculation steps are as follows: 
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𝑋 = [
𝑋11 𝑋1𝑝
𝑋𝑛1 𝑋𝑛𝑝

] (5) 

The raw data are normalized to obtain the normalization matrix 𝑌 . The 

information entropy of the label 𝑦 is calculated, which is a measure of uncertainty; the 

smaller the probability of an event occurring, the higher the uncertainty. 

𝐻(𝑦) =∑𝑝(𝑦𝑖) ln 𝑝 (𝑦𝑖)

𝑁

𝑖=1

 (6) 

Given a variable 𝑋, the degree of uncertainty in the variable 𝑦 can be expressed 

in terms of conditional entropy as 

𝐻(𝑦|𝑋) =∑
1

𝑁
𝑝(𝑦𝑖|𝑥1) ln 𝑝 (𝑦𝑖|𝑥1)

𝑁

𝑖=1

 (7) 

To better describe the general connection between things, the concept of mutual 

information is introduced, which indicates the degree of association between random 

variables, 𝑋(𝑖,𝑊min)
′  and 𝑦. The mutual information between 𝑋(𝑖,𝑊min)

′  and 𝑦 is: 

𝑀𝐼 = 𝐼(𝑋(𝑖,𝑊min)
′ , 𝑦) (8) 

The data matrix of length MIW and with the highest mutual information 

𝑋(𝑖,𝑊min)
′ , 𝑞𝑀𝐼 ∈ [1,2, . . . , 𝐾𝑊𝑀𝐼

] is the final simplified data matrix [19]. It is assumed 

that the simplified data matrix with the highest mutual information contains signals 

with the highest emotional intensity that are selected for further analysis, as shown in 

Table 1. 

Table 1. Multi-grain sentiment AI classification. 

Input The parameters are entered, 𝝀, 𝜺,𝒎 ≫ 𝒏, the sample set 𝑺𝒊 ={(𝒙𝒍
𝒊, 𝒚𝒍

𝒊)}
𝒍=𝟏

𝒏𝒊
 

Output 

1: Calculate Gram matrix 𝐾 and 𝐿 

2: DICA: 𝐶 = 𝐿(𝐿 − 𝑁 ∈ 𝐼)−2𝐾2 

3: According to, 
1

𝑛
𝐶𝐵 = 𝐾𝑄𝐾 − 𝐾 − 𝜆𝐼 𝐵𝑇 to calculate the conversion matrix 𝐵 

4: output 𝐵 

We next discuss intra-class scattering and inter-class variation. Here we use 𝑙 ∈

{1, . . . , 𝐶} to denote the conditional probability distribution 𝑃𝑋|𝑙=1 over the space 𝒳 

for the co-C class labels, which should be on the joint distribution 𝑃𝑋𝑌 educed from 

𝑃𝑋𝑌. Based on the above conditions, the inter-class scatter is defined as: 

𝜓({𝜇𝑃𝑋|𝑙=1 , . . . , 𝜇𝑃𝑋𝐶}) = 1 (9) 

The intra-class scatter of class 𝑙 is defined as: 

𝜓(𝑃𝑋𝑌) = 1 (10) 
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Suppose the set of samples of class l after a nonlinear mapping 𝜙 is S𝑆𝑙𝑤 =

{𝜙(𝑥𝑖)}𝑦𝑖=𝑙 , then the centroid of the class l mapping sample set is 𝜇𝑙 =
1

𝑁
𝑙 ∑{𝜙(𝑥𝑖)}𝑦𝑖=𝑙, where Nl denotes the number of samples in category l. 

In each of the kernel function-based algorithms involved in the experiments, we 

used linear kernel functions for computation. For algorithms such as Transfer 

Component Analysis (TCA) that require large-scale matrix operations, we simplify 

the operations by employing a downsampling method. Specifically, 1000 samples are 

randomly selected from each source domain subject and pooled together as the training 

set due to memory and operational constraints. Since each algorithm involves 

extensive hyperparameter searches, we ensure a wide search range to accommodate 

sufficient hyperparameter adjustments [52]. 

However, none of the five algorithm combinations based on the FCSP (Filter 

Common Spatial Patterns) algorithm mentioned in the previous section 

simultaneously consider both metrics. Algorithms such as EC (Electrode 

Combination) and Corer-Feat can measure the similarity between feature vectors but 

do not account for the direct effect of the classifier on electrode selection. The DM 

(Distance Metric) algorithm measures the distance between similar and dissimilar 

samples in Euclidean space, calculating the separability of each electrode, and then 

combines classification results to obtain the optimal small number of electrode 

combinations. However, practical analysis shows that adding electrodes according to 

separability rankings does not always enhance classifier performance and may lead to 

performance fluctuations [53]. 

The FCSP + SVM (support vector machines) + probability distribution matrix 

(Corr-Prob) approach calculates the relationship between single-electrode 

classification results and all-electrode classification results, essentially using the 

performance of single-electrode classifiers as a direct criterion for the separability 

metric. This approach ensures a more balanced electrode selection process, reducing 

performance fluctuations, as shown in Table 2 [54–57]. 

Table 2. Detailed flow of the algorithm and pseudo code. 

Input: EEG signal containing all electrodes 

Output: Sorted list of electrode separability R 

Process: 

Step 1: Initialize. Initialize an empty list R used to record the sorting of electrode separability; initialize another list S representing the current 

electrode subset state (which specific electrodes are included), and the initial state should include all electrodes. 

While S ≠ O do 

Step 2: Calculate the separability ranking. According to Equation (4), calculate the separability standard 𝐽𝑒𝑓 of each electrode in the current 

electrode subset 𝑆, and sort in reverse order according to 𝐽ℎ. 

Step 3: Eliminate the electrode with the worst separability. According to the current separability ranking, the electrode with the worst 

separability (assumed to be 𝐶ℎ1) is eliminated, and the electrode subset 𝑆1 after 𝐶ℎ1 is eliminated. 

Step 4: Testing and comparison of classification performance. For the S and S electrode subsets, the FACP and SVM algorithms respectively 

extract feature vectors and classify them to obtain the classification accuracy index. 

The classification performance if 𝑆𝑡1 is better than 𝑆 do 

To achieve the purpose of the algorithm, write 𝐶ℎ to the list R, remove 𝐶ℎ from S, and re-assign 𝑆 to 𝑂. The classification performance of elif 

S is better than 𝑆1 do 
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Table 2. (Continued). 

Input: EEG signal containing all electrodes 

Calculate the correlation between the 𝐶ℎ feature vector and the feature vector of the 𝑆 electrode subset 𝑟, calculate the Metropolis criterion 

according to Equation (5) 

if (criteria condition is true) and (𝑟 is less than the threshold) do 

Write 𝐶ℎ to list 𝑅, remove 𝐶ℎ from S, and re-assign 𝑆1 to 𝑂. 

end if 

Return R 

When the electrode selection process is first started, there should be a higher 

probability of re-evaluating the removed electrodes because of the influence of noise 

and other factors that make the algorithm inaccurate for electrode separability 

assessment, and the probability of re-evaluation should be reduced when the remaining 

electrodes are gradually reduced [20]. Therefore, the Metropolis criterion as in 

Equation (11) is defined based on the application of the SA algorithm to the electrode 

selection of the BCI system. 

exp(
𝛾 ∗ (Acc(𝑖) + Acc(𝑗))

leftNumber
) ≤ random(0,1) (11) 

where Acc(𝑖) and Acc(𝑗) represent the state of the electrode combination eigenvectors 

(classification performance metrics) before and after excluding the corresponding 

electrodes, respectively, leftNumber is the number of electrodes in the remaining 

subset, random(0,1)  represents the random function that models the acceptance 

probability of the Metropolis criterion, and 𝛾 is a hyperparameter that is set to 1000 in 

this thesis work.  

3. Analysis of results 

3.1. Brain-computer interface attention detection results 

In online learning scenarios, students are typically seated close to screens—

whether on computers, tablets, or other electronic devices—resulting in minimal head 

deflection when they are focused on learning content. In this chapter’s experimental 

analysis, it is assumed that when the deflection angle of a learner’s head in the image 

exceeds ± 45°, the system detects the student’s head as being in a deflection state 

within the current frame [58]. 

After the lesson, in-depth interviews were conducted with both lecturers and 

students to comprehensively evaluate the accuracy of the student classroom attention 

detection system. Teachers compared the system’s evaluation results with students’ 

performance in stage exams. The analysis revealed that the system demonstrated strong 

predictability regarding students’ learning performance, with high accuracy in its 

identification results, highlighting its valuable potential for practical application [59]. 

Interviews with students further confirmed the system’s reliability. When 

students reviewed video replays after class, they found the system’s evaluations 

consistent with their actual learning states at the time, providing additional evidence 

of its high accuracy [60]. Both teachers and students agreed that the student classroom 
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attention detection system was user-friendly and made a significant contribution to 

classroom teaching, as illustrated in Figure 4 [61–64]. 
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Figure 4. Comparison of attention levels. 

The experimental results demonstrate that the method proposed in this paper 

aligns closely with manual statistics, achieving a 92% accuracy rate for the student 

classroom attention evaluation detection system. In follow-up experiments, detecting 

students’ attention under normal lighting conditions yielded a 2.5% improvement in 

detection accuracy. This further validates the effectiveness of the proposed method in 

detecting classroom learning behaviors. The system serves as a valuable process 

evaluation tool, allowing teachers to comprehensively monitor classroom content and 

students’ learning behaviors. By enhancing the quality of teaching, this method shows 

significant potential for practical application in classroom settings [65]. 

Additionally, a line-of-sight estimation method based on a compound loss 

convolutional neural network (CNN) was implemented. This novel approach 

introduces a compound loss model with a spatial weighting layer. The network utilizes 

two independent fully connected layers to predict the horizontal and vertical deflection 

angles of the line of sight. Each angle is assigned its own loss function, which is further 

divided into two components: angle classification and regression. The models were 

trained and optimized using the dataset, and comparative experiments with previously 

superior models revealed that this CNN-based line-of-sight estimation method 

delivers excellent performance and generalization capabilities. Ablation studies 

conducted on several components of the compound loss further confirmed the 

effectiveness of the proposed method [66,67]. 

Given that instances of distraction were less frequent and the study involved a 

relatively homogeneous sample of students, a shorter observation period was allocated 

for distracted states. During testing, students were instructed to remain in a focused 

study state for the first 30 s of the video. Afterward, they were asked to perform 

random actions such as looking left or right, leaving their seats, or deviating their gaze. 

This phase assessed the system’s ability to detect irregular states of attention during 

study. The results for one of the participants are shown in Figure 5 [68–72]. 
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Figure 5. Confusion matrix plot of detection accuracy. 

The overall teaching quality of the students is analyzed by combining head 

posture and expression recognition to calculate the level of attention, engagement, and 

confusion in the classroom. For the teacher to visualize the classroom situation, the 

system is represented visually in the form of a bar chart. If the system analyzes that 

the students’ attention, participation, and confusion are low in the classroom learning 

process, it indicates that the current learning efficiency is not good, and the teacher 

needs to adjust the teaching strategy to improve the teaching content to enhance the 

teaching quality. 

A system for detecting students’ learning attention in an online learning 

environment that incorporates head posture and line of sight estimation is designed to 

discriminate subjects’ attention using a combination of feature information obtained 

from head posture and line of sight estimation algorithms. Experiments with multiple 

subjects show that the system can objectively and accurately identify and analyze 

students’ learning attention. 

3.2. Multi-granularity sentiment AI classification model performance 

The EEG electrodes with greater emotional relevance are distributed along the 

edges of the head, particularly at the front and sides, whereas the central region 

provides relatively less emotional information. This demonstrates that the location of 

EEG electrodes has a significant impact on emotional classification. Additionally, 

differential entropy (DE) feature maps derived from EEG signals vary across different 

frequency bands, indicating the importance of separating information from each 

frequency band. In this approach, multi-channel, multi-band feature maps are 

constructed, and a convolutional neural network (CNN) is used for autonomous 

learning to extract abstract emotional features [73]. 

The trends in multi-channel EEG DE features over time are depicted in Figure 

6. Overall, EEG features for the same emotion do not exhibit large changes over time. 

However, individual channel electrodes do show significant variations in EEG 

features. Channels with larger variations are likely to contain rich emotional 

information. Therefore, in this chapter, the temporal information of the same emotion 
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is fed into the CNN model to allow it to learn from richer empirical data, which in turn 

enhances the generalization performance of the neural network model [74,75]. 
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Figure 6. Feature change map. 

The training process of the regional user sentiment recognition model is as 

follows: Read the upper four model layers of the trained model with parameters; this 

part of the parameters is not trainable. Add two fully connected layers with randomly 

initialized weight parameters; this part of the parameters is open for training. The data 

from DEAP were randomly divided into four groups of eight each. The first 40 s of 

data were used for training, and the last 20 s of data were used for testing. A new 

model is first trained directly with this dataset to serve as a control, followed by a 

migration learning model to propose a real-time sentiment recognition model based 

on migration learning and deep learning on the cloud side. By migrating the generic 

model trained in the cloud to a small dataset of individuals collected by the edge server, 

personalized sentiment recognition models can be obtained by training. To improve 

the recognition accuracy, the edge server periodically collects the sentiment data of 

users and updates the sentiment recognition model. 

The overall emotional state transfer of the robot after external stimulation is 

better, especially for the happy, sad, surprised, and calm types of emotional state 

transfer. This experiment proves that the emotional interaction model proposed in this 

paper can better analyze the emotional state transfer process of the robot, which is 

conducive to a more natural and harmonious human-robot interaction experience. By 

calculating the emotion recognition rate as the evaluation performance index and using 

the leave-one-out cross-validation method to count the experimental results of each 

algorithm, as shown in Figure 7.  
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Figure 7. Performance comparison in cross-domain datasets. 

The algorithm proposed in this paper demonstrates the best sentiment recognition 

rate and exhibits significant superiority over other methods. This improvement in 

recognition rate can be attributed to the feature migration learning capability of the 

algorithm. By performing difference analysis during feature extraction, the algorithm 

selectively retains commonality in features and discards information that significantly 

differs from the target domain. This selective training enhances the recognition rate in 

the target domain [76]. In contrast, other comparison algorithms lack migration 

learning capabilities, meaning they incorporate all feature information in the dataset. 

This inclusion of disordered and irrelevant features leads to a chaotic feature space 

distribution, ultimately decreasing the sentiment recognition rate [77]. 

The proposed algorithm effectively addresses the challenge of sentiment 

recognition by leveraging feature migration learning. By filtering out irrelevant 

features and focusing on shared feature information, the algorithm not only improves 

the recognition rate but also offers significant generalization capabilities in the target 

domain. This approach outperforms traditional methods that do not incorporate feature 

migration learning, which often suffer from poor recognition rates due to cluttered 

feature spaces. Overall, this algorithm holds great potential for applications in 

sentiment analysis and emotion recognition, providing a robust framework for 

enhancing sentiment classification tasks. 

4. Discussion 

This paper explores the use of brain-computer interface (BCI) systems for 

detecting attention fatigue and classifying emotional states, highlighting their 

immense potential in mental health applications. BCI technology facilitates non-

invasive monitoring of brain activity, which is particularly useful for real-time 

assessments of emotional and cognitive states. EEG signals provide critical insights 

into mental states, especially through observations of the theta and gamma frequency 

bands, which are strongly associated with attention and emotion regulation [78,79]. 

Studies have demonstrated that integrating BCI systems in classroom environments 

can provide significant insights into student engagement levels, enabling educators to 

adapt teaching methods based on real-time feedback [80]. Furthermore, the continuous 
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monitoring of attention levels offers valuable applications in clinical settings, where 

attention fatigue often correlates with various mental health disorders [81]. 

The design of a multi-grain emotional AI classification model enhances the 

accuracy of emotion detection by analyzing EEG signals across different frequency 

bands. By leveraging differential entropy (DE) features, the model captures both 

coarse- and fine-grained emotional cues from brain activity. This multichannel 

approach ensures the accurate identification of emotional states, such as joy, anger, or 

sadness, even across varying contexts. Recent studies have validated the effectiveness 

of using convolutional neural networks (CNNs) to process these multi-grain features, 

particularly in applications requiring real-time classification, such as gaming or 

interactive learning environments [82,83]. Additionally, the capability to process these 

signals in near real-time significantly increases the potential of BCIs in scenarios 

where timely responses are critical, such as emergency medical situations or high-

stress professional environments [84]. 

A key advancement in the field of emotion recognition is the implementation 

of transfer learning. Transfer learning enables emotion classification models to adapt 

to new users by transferring knowledge learned from one dataset or individual to 

another. This is especially beneficial for EEG-based emotion recognition, where 

inter-subject variability often causes degraded performance in traditional machine 

learning models [85,86]. By applying transfer learning techniques, models can 

identify shared features across subjects while discarding irrelevant data, thereby 

improving generalization performance. This approach has been shown to enhance 

accuracy in cross-subject settings, particularly in studies involving large, diverse 

datasets, as demonstrated in multi-domain emotion recognition research [87]. The 

ability to adapt in real time makes transfer learning an essential component of 

personalized emotion recognition systems, with promising applications in mental 

health monitoring, gaming, and education [88]. 

The future of BCI-based emotion recognition systems lies in developing more 

sophisticated hybrid models that combine traditional neural networks with advanced 

deep learning architectures. For example, researchers are exploring the integration of 

Recurrent Neural Networks (RNNs) with CNNs to improve the temporal processing 

capabilities of these models, which are critical for tracking dynamic emotional 

changes over time [89]. Additionally, the application of reinforcement learning in BCI 

systems could enable the creation of adaptive and autonomous emotion recognition 

models that continuously learn from new data inputs, further enhancing accuracy and 

usability in long-term applications [90]. Ultimately, the development of these 

advanced models will lead to more robust, real-time emotion classification systems, 

with transformative benefits across fields such as healthcare, education, and 

entertainment [91–94]. 

5. Conclusion and future outlook 

5.1. Conclusion 

In this paper, we leveraged the fractal characteristics of EEG signals as feature 

values to achieve offline recognition of emotional states. While the experimental 

results were promising, a considerable gap remains between the controlled 
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experimental environment and real-world applications. For instance, the use of a 64-

conductor EEG acquisition cap, while effective in laboratory settings, poses 

significant challenges for practical, everyday use due to its complexity and lack of 

convenience. Additionally, the offline nature of signal processing introduces 

limitations, as most real-time emotion recognition applications require high-speed 

processing with minimal computational latency. The computational demands 

associated with real-time EEG signal processing and the optimization of classification 

algorithm parameters remain areas in need of further exploration. This study relied 

heavily on existing parameters from prior research, necessitating deeper comparative 

analysis and fine-tuning to ensure optimal performance across different contexts. 

These challenges represent key obstacles that must be addressed before transitioning 

from experimental analysis to practical applications of emotion recognition systems. 

The proposed algorithm for detecting learner fatigue in online learning 

environments also demonstrated considerable promise, particularly through its 

integration of head posture detection and vision deviation detection. By calculating 

the ratio of frames with head or gaze deviation to the total number of frames within a 

given time period, the system successfully identified inattentive behaviors, such as 

gaze aversion and distraction. The attention detection experiment yielded excellent 

performance, highlighting the potential of the system to improve educational outcomes 

by identifying and addressing student engagement issues in real-time. 

5.2. Future outlook 

Looking ahead, several critical advancements are necessary to enhance the 

applicability and effectiveness of EEG-based emotion recognition and attention 

detection systems. 

First, improvements in wearable EEG technology will be essential for making 

real-time emotional and cognitive monitoring more practical. The transition from 

bulky 64-conductor systems to more compact, user-friendly, and less obtrusive 

wearables is a critical step toward widespread adoption in real-world settings, such as 

education, healthcare, and daily life applications [78–81]. 

Second, advancements in real-time processing algorithms are needed to address 

the computational challenges posed by EEG data. Integrating deep learning 

techniques—such as convolutional and recurrent neural networks—with edge 

computing capabilities could enable faster and more efficient processing of emotional 

and cognitive signals, making real-time applications more feasible [82–85]. Moreover, 

optimizing transfer learning models to account for individual variability and cross-

domain applications will ensure these systems remain adaptable across different user 

profiles and contexts [86–88]. 

Lastly, enhancing the system’s generalization capabilities is vital to improving 

its robustness against various environmental factors, such as lighting conditions, 

movement, and external noise. Future research should prioritize multi-modal 

approaches that combine EEG data with other bio-signals, such as facial expressions, 

heart rate, or eye movements. By integrating these complementary data sources, 

researchers can develop more accurate and reliable emotion recognition models better 

suited to complex, real-world environments [89–91]. 
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By addressing these challenges, the next generation of emotion recognition and 

attention detection systems will not only become more accurate but also more 

accessible, adaptable, and seamlessly integrated into everyday life. These 

advancements will pave the way for transformative applications in education, 

healthcare, and beyond, fostering improved mental well-being and engagement across 

diverse contexts. 
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