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Abstract: Athletic injuries are a common problem in sports. Due to the insufficient 

processing of multimodal biomechanical data by traditional prevention strategies, 

personalized risk prediction cannot be achieved. To this end, this paper adopts an athletic 

injury prevention method based on sparse principal component analysis (SPCA) and spatio-

temporal graph convolutional network (ST-GCN). The Vicon Vantage V5 3D motion capture 

system and the Noraxon Ultium EMG electromyography acquisition device are used to 

obtain the athlete’s joint angle change rate, ground reaction force (GRF) and 

electromyographic activity data, and the SPCA method is used to extract key biomechanical 

features, thereby reducing data redundancy and improving the representativeness of features. 

Subsequently, ST-GCN is used to construct a dynamic risk prediction model to capture the 

temporal changes and spatial dependencies in the motion sequence to achieve precise and 

efficient risk assessment. In the experimental verification, the prediction accuracy of the 

model reaches 95.3% when the number of features was 20, and the ability to provide risk 

feedback in real-time is realized to generate personalized injury prevention strategies. Studies 

have shown that the integration of statistics and sports biomechanics has effectively 

improved the efficiency of athletic injury prevention and provided new ideas for scientific 

and precise sports management. 

Keywords: athletic injury prevention; sparse principal component analysis; spatio-temporal 

graph convolutional network; biomechanical data analysis; dynamic risk prediction 

1. Introduction 

Athletic injuries are an important issue that affects athletes’ competitive ability 

and career life. How to scientifically and effectively prevent injuries has become one 

of the core issues in sports biomechanics research. With the increase in sports 

intensity [1,2] and complexity [3,4], traditional preventive measures are difficult to 

meet the personalized needs of athletes due to the lack of precise analysis of 

individual differences [5] and comprehensive understanding of multimodal data [6,7]. 

The current mainstream methods mainly rely on the basic theory and empirical 

judgment of sports biomechanics [8,9], and are highly dependent on biomechanical 

data [10,11]. However, it is difficult to fully explore the potential relationship 

between complex movements [12] and injury risks [13,14] in sports. Although data 

acquisition devices [15] are constantly being optimized, the multimodal data they 

collect has not been fully utilized, limiting the accuracy of risk prediction [16,17]. 

The redundancy of high-dimensional data and the complexity of potential features 

also further increase the difficulty of analysis, making it difficult to directly apply 

multimodal data to personalized injury risk modeling. For complex dynamic action 

sequences [18], existing analysis methods often ignore the correlation between time 

and space, making it difficult to precisely capture subtle changes in action patterns. 
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In the field of athletic injury prevention, existing research mainly relies on 

macroscopic biomechanical analysis such as joint angles and ground reaction forces. 

Cellular biomechanical properties are equally important for understanding the 

functions and injury mechanisms of tissues and organs. Integrating cellular and 

macroscopic biomechanical data provides a more comprehensive understanding of 

sports injuries. Cellular biomechanical changes reveal changes in the microstructure 

and function of tissues, which will predict or explain the occurrence and 

development of sports injuries. Therefore, exploring biomechanical changes at the 

cellular level will add depth to athletic injury prevention and reveal new prevention 

and treatment strategies. Athletic injury prevention strategies based on traditional 

methods are inefficient and cannot meet the needs of high-level competitive sports 

for precise risk assessment. Traditional athletic injury prevention strategies rely on 

standardized training plans and empirical evaluations. Static posture analysis only 

provides certain information, cannot reflect dynamic changes in exercise, and cannot 

accurately capture the movement deviations of athletes in competition, so it is 

difficult to effectively predict injury risks. Physical fitness tests and sports 

performance assessments are limited to single physiological data, ignoring changes 

in factors such as fatigue and environment during exercise, and cannot fully assess 

the actual risks of athletes. Although stretching and warm-up before and after 

exercise can help with short-term relief, they lack real-time monitoring of subtle 

changes in complex action sequences and cannot effectively intervene before injuries 

occur. In this context, finding a new method that integrates statistics and 

biomechanics to achieve precise and efficient athletic injury prevention has 

important theoretical and practical value. 

In the field of athletic injury prevention, researchers have used a variety of 

statistical methods to try to find new solutions. Zhang [19] studied the athletic injury 

situation and risk prevention and control of college students by searching relevant 

literature, distributing questionnaires to college students and experts, and using SPSS 

(Statistical Product and Service Solutions) software for data statistics. He found that 

the longer students participated in sports, the less athletic injuries they suffered. This 

showed that strengthening physical education and improving students’ awareness of 

sports risk prevention and control had positive significance for avoiding students’ 

athletic injuries. Athletic injury prevention [20,21] depends on individual behavior 

and is closely related to the structural improvement of the education system. 

Keavanloo et al. [22] interviewed physics education teachers and constructed a 

theoretical model, and then conducted a questionnaire survey and structural equation 

modeling analysis on physics education students. They concluded that the incidence 

of athletic injuries among sports majors can be significantly reduced by improving 

enrollment, education planning, venue security, and teaching notification. With the 

increasing complexity of athletic injury prevention strategies [23,24], personalized 

intervention measures that take into account the biological characteristics of athletes 

[25] are particularly important. Su [26] used the fault tree analysis method to explore 

the statistical correlation between the biorhythm status of athletes and athletic 

injuries, and pointed out that formulating appropriate exercise patterns for athletes 

based on biorhythm theory can effectively improve their sports performance and 

reduce the risk of injury. These studies provide theoretical support and practical 
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basis for athletic injury prevention [27,28], but there are still some deficiencies in 

personalized protection strategies for different types of sports, long-term effect 

evaluation, and interdisciplinary integration. 

The application of sports biomechanics in athletic injury prevention has 

gradually become an important research direction in the field of sports science. 

Vancini et al. [29] reviewed and analyzed the latest progress in biomechanics and its 

impact on sports performance and injury prevention, summarized the key 

developments in this field, and emphasized its important value in optimizing sports 

performance and reducing the risk of injuries. To achieve more accurate injury 

prevention, more and more studies are focusing on how to combine the principles of 

biomechanics [30,31] with individualized training programs [32] to improve the 

intervention effect. Chang et al. [33] explored the effect of anterior cruciate ligament 

(ACL) injury prevention strategies on young female football players through 

biomechanical analysis and intervention studies, and proposed that ACL injury 

prevention training should be optimized based on individual kinematics and sports 

coordination. In biomechanical research, combining deep learning [34,35] and 

statistical analysis can further improve the accuracy and effect evaluation of injury 

prevention strategies. Wang et al. [36] used biomechanical analysis, deep learning 

technology, and statistical analysis to explore injury prevention and rehabilitation 

strategies in physical education, and verified that personalized teaching strategies 

based on biomechanical characteristics can effectively reduce the risk of athletic 

injuries and improve rehabilitation effects. These studies demonstrate the potential of 

biomechanics in athletic injury prevention, but current research still lacks in-depth 

interdisciplinary integration and personalized research on the characteristics of 

different sports, and more exploration and verification are needed in this regard. 

To solve the above problems, this paper proposes an athletic injury risk 

prediction method based on the combination of statistical analysis and machine 

learning. The Vicon Vantage V5 3D motion capture system is used to collect the 

athlete’s motion trajectory and joint angle change data; the Noraxon Ultium EMG 

electromyography device is used to record the electromyographic (EMG) activity 

signal; the Bertec force plate system is used to measure the ground reaction force. 

Combining these devices, a high-precision, multimodal dataset is constructed to 

cover key biomechanical features. In the data processing stage, the SPCA method is 

used to extract key features and screen biomechanical indicators that are highly 

correlated with injury risk while reducing the data dimension to alleviate the 

interference of redundant information. In the modeling stage, the ST-GCN is used to 

design a dynamic risk prediction framework, model the motion data as a graph 

structure, fully explore the dynamic relationship and spatial dependency 

characteristics in the time series, and predict the potential injury risk under different 

motion modes. This paper combines SPCA with ST-GCN for athletic injury 

prevention, innovatively integrates statistics and biomechanical methods, and 

realizes dynamic risk assessment through high-precision data collection and analysis, 

providing athletes with personalized injury prevention strategies and providing a new 

perspective for multimodal biomechanical data analysis. The method in this paper 

achieves an effective transformation from theoretical analysis to practical application 

from data collection, feature extraction to dynamic modeling, and provides 
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theoretical support and technical reserves for future intelligent and precise athletic 

injury prevention and control research. 

2. Athletic injury prevention methods 

2.1. Data collection and processing 

In data collection, this paper uses the Vicon Vantage V5 3D motion capture 

[37,38] system to record the athlete’s joint angle change rate, obtains 

electromyographic activity signals through the Noraxon Ultium EMG 

electromyography device, and uses the Bertec force plate system to measure the 

ground reaction force to construct a multimodal biomechanical dataset. During the 

data collection process, all participants signed an informed consent form on the 

premise of fully understanding the purpose of the study and the use of the data, 

ensuring the legality and transparency of data use. In order to protect privacy, all 

personal identification information has been removed, and the data is stored and 

processed in an anonymous form, strictly following relevant ethical guidelines and 

privacy protection regulations. The time series data collected by each device are 

synchronously calibrated to ensure time alignment and spatial consistency. The 

athlete completes standardized movements, reduces random errors and captures 

biomechanical features, providing high-quality raw data for subsequent processing. 

Figure 1 intuitively shows the effect of motion trajectory and joint point marking in 

multimodal data collection. 

 

Figure 1. Motion collection and joint point marking. 

In the data processing stage, the collected signal is subjected to wavelet 

threshold denoising to remove high-frequency noise caused by electromagnetic 

interference or device jitter. Assuming that the wavelet coefficient of the collected 

original signal after decomposition is 𝐶𝑗,𝑘 , the threshold processing is performed 

using the following equation: 

�̂�𝑗,𝑘 = {

𝐶𝑗,𝑘 − 𝜆 if 𝐶𝑗,𝑘 > 𝜆,

𝐶𝑗,𝑘 + 𝜆 if 𝐶𝑗,𝑘 ≤ −𝜆,

0 otherwise.

 (1) 
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Among them, 𝜆 is the threshold parameter for noise removal. For missing points 

in the signal, linear interpolation is used to fill in the missing values to ensure data 

integrity. The normalization operation maps the multimodal data to the interval [0,1] 

to eliminate the influence of dimensional differences. The processed standardized 

data provides a consistent input for subsequent feature extraction and modeling. 

2.2. SPCA sparse feature extraction method 

SPCA is a feature extraction method that applies sparsity constraints based on 

traditional principal component analysis (PCA), aiming to achieve effective selection 

of key features through sparse regularization. Compared with traditional PCA, SPCA 

introduces sparsity constraints in feature extraction, which makes it more focused on 

retaining features closely related to injury risk while reducing redundant information 

when processing high-dimensional data. This method improves the efficiency of 

feature selection and enhances the interpretability of data in low-dimensional space. 

For athletic injury prevention tasks, this means that key biomechanical indicators can 

be identified more accurately. In athletic injury risk assessment, features extracted by 

SPCA are more representative, which helps to reduce the computational burden in 

the model training process and prevent overfitting caused by high-dimensional data. 

The goal of SPCA [39] is to project high-dimensional data into a low-dimensional 

space while ensuring that the projection matrix is sparse, thereby retaining important 

information related to damage risk and reducing data redundancy. Traditional PCA 

extracts principal components by maximizing the variance of data projection, and the 

objective function is: 

max
𝑤

𝑤⊤Σ𝑤 , 𝑠. 𝑡. ‖𝑤‖2 = 1, (2) 

Among them, 𝑤 is the projection vector, and Σ is the data covariance matrix. 

However, the projection vector generated by PCA is usually dense, which makes the 

extracted features difficult to interpret and contains a lot of redundant information. 

To apply sparsity, SPCA adds an L1 norm constraint in the optimization 

process and changes the optimization objective to: 

max
𝑤

𝑤⊤Σ𝑤 − 𝛼‖𝑤‖1, 𝑠. 𝑡. ‖𝑤‖2 ≤ 1, (3) 

Among them, 𝛼 is the sparsity adjustment parameter, which is used to balance 

the maximization of the projection variance and the sparsity requirement. Through 

this optimization form, SPCA can select fewer but important features, significantly 

improve the efficiency of feature selection, and retain key information related to 

damage risk. The optimization problem is solved by an iterative algorithm, and 

finally a sparse projection vector 𝑤  is obtained, which maps the original high-

dimensional data to a low-dimensional subspace. 

The application of sparse regularization effectively reduces feature redundancy, 

optimizes computational efficiency, and improves the interpretability of data in low-

dimensional space. In the damage risk assessment task, the features extracted by 

SPCA are more representative, which reduce the computational burden during model 

training and avoid the risk of overfitting caused by high-dimensional data. This 

process lays a solid foundation for subsequent dynamic risk prediction modeling. 
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2.3. ST-GCN model construction and risk assessment 

Compared with time series models such as LSTM, ST-GCN can simultaneously 

capture spatiotemporal dependencies and dynamic changes, which is more effective 

in analyzing complex motion patterns and predicting potential injury risks. For 

multimodal biomechanical data, ST-GCN [40] uses graph convolution operations to 

model the spatial relationship between joints and extracts the temporal dependencies 

in motion sequences through temporal convolution layers, thereby providing more 

accurate risk prediction than single temporal or spatial dimension analysis. The 

model comprehensively considers the spatial structure and temporal evolution of 

motion data, providing more accurate predictions for dynamic risk modeling, 

showing great potential in athletic injury prevention and rehabilitation applications. 

2.3.1. ST-GCN model construction 

The construction process of the graph structure involves the close combination 

of spatial dependency and time series. In the risk assessment process, ST-GCN first 

preprocesses the collected raw data, which includes denoising, data normalization, 

and division of motion stages to ensure the quality of the input data. Next, the model 

constructs the athlete’s spatio-temporal graph model through spatio-temporal graph 

convolution operations. Each node represents a joint of the athlete’s body, and the 

edges between nodes represent the spatial relationship or mutual dependence 

between joints. By performing convolution operations on the graph structure, ST-

GCN extracts the athlete’s posture features and their dynamic changes over time. 

These dynamic features include the changes in angles, speeds, and accelerations of 

each joint during different movements of the athlete, which are directly related to the 

risk of injury to the athlete in different training and competition environments. The 

graph convolution operation of ST-GCN fuses these spatio-temporal features to 

capture the athlete’s posture changes at a specific time step and the dynamic changes 

across time steps. The model framework is shown in Figure 2. 

 

Figure 2. Model framework diagram. 



Molecular & Cellular Biomechanics 2024, 22(2), 1000.  

7 

The core modules of the ST-GCN model include graph convolution layer and 

temporal convolution layer. The graph convolution layer can capture the spatial 

dependencies between joints by performing convolution operations on the graph 

structure. The graph convolution operation of each layer helps the model learn the 

complex interactions and biomechanical laws between joints by weighted averaging 

the features of adjacent nodes. In graph convolution, the update equation of the 

representation vector hi of a node is: 

ℎ𝑖
(𝑙+1)

= 𝜎( ∑ 𝑊(𝑙)ℎ𝑗
(𝑙)

𝑗∈𝒩(𝑖)

+ 𝑏(𝑙)) (4) 

Among them, ℎ𝑖
(𝑙)

 is the feature vector of node 𝑖 at the 𝑙-th layer; 𝒩(𝑖) is the set 

of neighbor nodes of node 𝑖; 𝑊(𝑙) is the weight matrix of the 𝑙-th layer; 𝑏(𝑙) is the 

bias term; σ is the activation function. 

In the time dimension, the temporal convolution layer is responsible for 

extracting the dynamic changes between consecutive frames. By sliding the 

convolution window on the time axis, the temporal convolution layer can capture the 

temporal dependencies in the action sequence, thereby accurately modeling the 

evolution of the action. The node feature representation of the temporal convolution 

layer can be updated by the following equation: 

ℎ𝑡
(𝑙+1)

= 𝜎( ∑ 𝑊(𝑙)ℎ𝑗
(𝑙)

𝑡−𝑘≤𝑗≤𝑡+𝑘

+ 𝑏(𝑙)) (5) 

Among them, ℎ𝑡
(𝑙)

 is the node feature at time step 𝑡 ; 𝑘  is the size of the 

convolution window, which represents the span of adjacent frames in time; 𝑊(𝑙) and 

𝑏(𝑙)  are the weight matrix and bias term of the temporal convolution layer. The 

interaction of spatial and temporal information provides the model with stronger 

feature representation capabilities. 

To optimize the performance of the model, the loss function design considers 

multiple objectives in spatial and temporal dimensions. The loss function not only 

includes the prediction error, but also includes the regularization constraint on the 

spatial structure and the smoothness constraint on the temporal dependency. 

Assuming that the output of the model is �̂�, then the loss function can be written as: 

ℒ = ℒ𝑟 + ℒ𝑠 + ℒ𝑡 (6) 

Among them, ℒ𝑟  is the conventional prediction loss; ℒ𝑠  is the regularization 

loss for spatial dependency; ℒ𝑡  is the smoothness loss on the time series. These 

constraints help avoid overfitting and enhance the model’s learning ability for long 

time series. The gradient descent method and adaptive learning rate adjustment 

mechanism are used in the optimization process to ensure that the model can 

effectively extract useful features from a large amount of action data. Through these 

designs, the ST-GCN model can comprehensively consider the spatial structure and 

temporal evolution of the action, provide more accurate predictions for dynamic risk 

modeling, and show great potential in the application of athletic injury prevention 

and rehabilitation. 
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2.3.2. Risk assessment 

The ST-GCN model captures the dynamic characteristics of athletes’ posture 

changes, movement trajectories, load intensity, etc., during training or competition, 

and then evaluates the injury risk of athletes under different sports conditions. The 

injury risk score 𝑅 is calculated based on the extracted spatial-temporal feature 𝑍, 

and the equation is as follows: 

𝑅 = Sigmoid(𝑊𝑟𝑍 + 𝑏𝑟) (7) 

Among them, 𝑊𝑟  is the weight of the regression layer; 𝑏𝑟  is the bias term; 

Sigmoid is the activation function, which maps the score to the range of [0, 1]. The 

higher the score value, the greater the injury risk in the current sports state. 

According to the different score intervals, the system conducts a comprehensive 

analysis of the athlete’s state, and combines the previously collected biomechanical 

characteristics to build a targeted strategy generation module. 

2.4. Personalized injury risk strategy generation mechanism 

The personalized injury risk strategy generation mechanism aims to transform 

the injury risk prediction results based on the ST-GCN model into effective 

prevention strategies, thereby providing athletes with tailored training and 

rehabilitation guidance. In the personalized injury risk strategy generation 

mechanism, the assessment and management of psychological factors are an 

indispensable part. Psychological states such as stress and anxiety have a significant 

impact on athletes’ sports performance and injury risk. By integrating psychological 

assessment tools into biomechanical data analysis, a more comprehensive risk 

prediction model is constructed to optimize the effectiveness of preventive measures. 

The design of psychological intervention programs should be closely integrated with 

physical training programs to ensure that the two complement each other and jointly 

promote the overall health of athletes. The impact of individual differences such as 

age, gender, and weight on sports performance and injury risk cannot be ignored. 

Full consideration of these parameters in the model can improve the accuracy of 

personalized risk prediction and ensure that each athlete receives training and 

rehabilitation guidance that fits their own characteristics. Athletes from different 

backgrounds will show different risk characteristics when facing the same sports, so 

the model design needs to be flexible enough to adapt to various situations. Through 

a comprehensive analysis of the above variables, the most appropriate prevention 

plan can be tailored for each athlete. 

For the purpose of meeting the needs of different athletes, it is crucial to 

develop diverse injury prevention strategies. Each strategy should be customized 

according to the specific situation of the athlete to ensure its relevance and 

effectiveness. The system will conduct in-depth analysis based on the high-risk score, 

identify abnormal indicators associated with high risk, and make corresponding 

adjustment suggestions accordingly. The feedback information not only covers the 

current risk score and risk factor distribution, but also provides specific guidance on 

how to improve movement patterns or adjust training loads. The real-time feedback 

mechanism ensures that athletes are always within a safe training range, while 
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promoting closed-loop management from problem detection to feedback 

optimization. This process provides a scientific basis for action adjustment, training 

optimization, and recovery management, and also lays the foundation for the 

construction of intelligent and personalized injury prevention strategies. 

First, the main factors leading to high risk scores need to be identified. 

Abnormalities in the spatial feature dimension are usually related to joint angles 

beyond the normal range and uneven distribution of mechanical loads, while 

abnormalities in the temporal feature dimension may be manifested in incoherent 

movements, excessive acceleration fluctuations, or unbalanced rhythms. By 

analyzing these abnormal indicators, the system determines the specific problems in 

the athlete’s movements. Combined with the athlete’s historical data, the system 

further distinguishes the essential causes of these problems, whether they are due to 

technical movement defects, excessive training load, potential muscle fatigue, or 

insufficient strength. After clarifying the cause of the problem, the system matches 

the corresponding intervention strategy. For joint angle or trajectory deviations, the 

system recommends optimizing the movement mode by prompting the athlete to 

adjust the range of motion of a specific joint to restore to the standard state. For 

situations where the load exceeds the standard, it is recommended to adjust the 

training plan, reduce the current intensity or reduce the number of repetitions to 

ensure that the load fluctuates within a reasonable range. If fatigue signals are found, 

the system gives priority to recovery suggestions. 

 

Figure 3. Prevention strategy generation process. 

After the strategy is generated, the real-time feedback mechanism is activated, 

and the athlete receives feedback information through the mobile device. The 

feedback content is displayed in a graphical form, showing the current score, detailed 

distribution of risk factors and corresponding optimization plans, so as to understand 

the status of key joints, dangerous nodes of movements, and recommended 

adjustment directions. The feedback intuitively presents the comparison between the 



Molecular & Cellular Biomechanics 2024, 22(2), 1000.  

10 

joint’s out-of-range and ideal range, and is accompanied by specific text prompts to 

guide how to adjust the posture or change the training load. To improve the usability 

of feedback, the system supports real-time monitoring and iterative optimization, and 

dynamically updates the score and strategy by continuously collecting new data to 

ensure that athletes are always within the safe training range. The process of the 

prevention strategy generation mechanism is shown in Figure 3. 

Through the prevention strategy generation process driven by injury risk score, 

athletes can obtain precise and efficient guidance in each training, and realize closed-

loop management from problem detection to feedback optimization. This mechanism 

not only provides a scientific basis for action adjustment, training optimization, and 

recovery management, but also lays the foundation for the intelligent construction of 

personalized injury prevention strategies. 

3. Experimental design 

3.1. Dataset construction 

To fully demonstrate the biomechanical characteristics of athletes when 

performing different sports movements, this study constructs a dataset containing 

core parameters such as joint angle change rate, electromyographic activity, and 

ground reaction force. To evaluate the generalization ability of the model, the 

constructed dataset is randomly divided into training set, validation set, and test set, 

with a ratio of 70%, 15%, and 15%, respectively. To further ensure the stability and 

reliability of the model, this study adopted the k-fold cross-validation method. A 5-

fold cross-validation (k = 5) was selected, that is, the data set was evenly divided into 

5 subsets. In each round of training, 4/5 of the data was used for training and 1/5 of 

the data was used for validation. This setting ensures that each sample has the 

opportunity to participate in the validation process and also balances the relationship 

between computational cost and validation effect to a certain extent. All experiments 

were run independently multiple times, and the mean and standard deviation were 

reported to fully reflect the performance fluctuations of the model. Table 1 shows 

the biomechanical characteristics of each sample and the corresponding injury risk 

score, in order to provide data support for subsequent risk prediction and 

personalized prevention strategy generation. 

Table 1. Athlete biomechanical characteristics and injury risk score data. 

Sample ID Movement Type Joint Angle Change Rate (°/s) EMG Activity (mV) GRF (N) Risk Score 

1 Squat 45.2 0.76 1300.5 0.62 

2 Lunge 50.8 0.85 1405.3 0.75 

3 Vertical Jump 78.1 1.1 1608.2 0.88 

4 Forward Step Down 32.4 0.67 1254.7 0.49 

5 Single-leg Squat 58.9 0.92 1452.1 0.72 

In Table 1, the sample number is used to uniquely identify individual data; the 

movement type represents the action classification; the joint angle change rate and 

electromyographic activity are the core features; the ground reaction force reflects 
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the load distribution; the risk score is the result of the model prediction, ranging from 

0 to 1, which is used to quantify the injury risk of the action. Through the above 

dataset structure, multimodal biomechanical information can be fully integrated to 

provide data support for personalized risk assessment and intervention strategy 

formulation. 

3.2. Model parameter setting 

To achieve precise and efficient dynamic risk prediction, this paper combines 

the SPCA and ST-GCN models to make full use of their advantages in feature 

extraction and spatio-temporal modeling. SPCA selects key features through sparsity 

constraints to improve the representativeness of the data, while ST-GCN 

comprehensively considers the time and space dimensions to capture the potential 

risks in complex actions. The model parameter settings are shown in Table 2. 

Table 2. Parameter settings. 

Model Name Key Parameter Value Purpose 

SPCA 
Sparsity regularization 

parameter 
0.1 

Balancing feature sparsity and 

projection variance 

ST-GCN 

Number of graph convolution 

layers 
3 

Extracting spatial dependency 

features 

Number of temporal convolution 

layers 
2 

Capturing temporal dynamic 

features 

Temporal convolution window 

size 
5 Defining the temporal range 

Model 

Optimization 

Optimizer Adam 
Improving model training 

efficiency 

Initial learning rate 0.001 Controlling optimization step size 

Batch size 32 Handling data scale 

Maximum iterations 500 Limiting training cycles 

3.3. Evaluation indicators 

To fully verify the effectiveness and practical application value of the proposed 

method, the evaluation indicators used in the experiment include prediction accuracy, 

feature contribution rate (FCR), mean risk score error (MRSE), temporal-spatial 

modeling efficiency (TSME) and real-time feedback delay (RTFD). By quantifying 

the performance of the model at different levels, it provides systematic support for 

the research results. 

Accuracy is used to evaluate the overall prediction ability of the model for 

athletic injury risk, which is defined as the ratio of the number of correctly predicted 

samples to the total number of samples: 

Accuracy = TP + TN
TP + TN + FP + FN⁄  (8) 

Among them, TP and TN are the correct prediction numbers of positive and 

negative classes, respectively, and FP and FN are the number of incorrectly predicted 

positive and negative samples, respectively. 
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FCR is used to quantify the impact of biomechanical features on model 

performance and calculate the decrease in model accuracy after removing a feature: 

FCR =
ACCall − ACCw/oi

ACCall
⁄  (9) 

Among them, ACCall is the prediction accuracy when all features are included, 

and ACCw/oi is the prediction accuracy after removing feature i. 

MRSE is used to evaluate the precision of the model’s personalized risk score, 

which is calculated by the mean square error between the predicted and true values: 

MRSE =
1

𝑁
∑(𝑅𝑖

𝑝
− 𝑅𝑖

𝑡)2

𝑁

𝑖=1

 (10) 

Among them, 𝑅𝑖
𝑝

 and 𝑅𝑖
𝑡  represent the predicted risk score and the true risk 

score of the 𝑖-th sample, respectively, and 𝑁 is the total number of samples. 

TSME is used to evaluate ST-GCN’s ability to model temporal dynamics and 

spatial dependencies, and is calculated by combining the significance of temporal 

and spatial features in the model: 

TSME =
1

𝑁
∑(𝑊𝑖

𝑡 + 𝑊𝑖
𝑠)

𝑁

𝑖=1

 (11) 

Among them, 𝑊𝑖
𝑡  and 𝑊𝑖

𝑠  are the temporal and spatial feature weights of 

sample 𝑖, respectively. 

RTFD measures the speed at which the system generates personalized injury 

risk feedback, which is defined as the average delay time from input data to output 

results: 

RTFD =
1

𝑀
∑ 𝑇𝑗

𝑀

𝑗=1

 (12) 

Among them, 𝑇𝑗  is the delay time of the 𝑗-th prediction, and 𝑀  is the total 

number of predictions. These evaluation indicators are used to comprehensively 

analyze the performance of the proposed method in multimodal feature extraction, 

dynamic modeling and real-time feedback capabilities, providing data support and 

theoretical basis for the experimental results. 

4. Results 

4.1. Verification of the effectiveness of multimodal feature extraction 

To verify the optimization ability of SPCA for multimodal biomechanical data, 

this paper experimentally evaluates the impact of the number of features on the 

model prediction accuracy. The number of features increases from 1 to 20, and the 

corresponding prediction accuracy is recorded. The focus of the experiment is to 

analyze the specific effect of the change in the number of features on the model 

performance, and to provide a basis for feature selection for the dynamic risk 
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prediction model. Figure 4 is a curve showing the relationship between the number 

of features and the prediction accuracy. 

 

Figure 4. Accuracy trend of sparse feature extraction method. 

The data analysis shows that as the number of features increases, the prediction 

accuracy of the model shows a steady improvement trend overall. Within the first 6 

feature numbers, the accuracy increases rapidly from 70.2% to 86.4%, which shows 

that increasing the number of features effectively improves the prediction ability of 

the model. When the number of features is between 6 and 14, the accuracy fluctuates 

slightly, and the accuracy drops to 86.5% at the 9th feature. Later, with the 

application of more features, the model gradually stabilizes. When the number of 

features reaches 15, the accuracy begins to show a more stable growth, and finally 

reaches 95.3% at 20 features. This trend shows that the increase in features helps 

improve the accuracy of the model, but when there are too many features, the 

improvement effect slows down and brings certain redundant information. Therefore, 

a reasonable selection of the number of features is crucial to improving the 

performance of the prediction model. 

Although the experimental results demonstrate the effectiveness of the SPCA 

method in feature extraction, potential sources of error are still worth analyzing. 

During the data collection phase, noise or bias introduced by sensor calibration 

accuracy and equipment synchronization issues can affect feature accuracy. 

Individual differences in athletes such as body shape, muscle strength, and flexibility 

increase the variability of the data. During the feature selection process, there is a 

subjective bias in the selection of sparsity parameters, which can easily lead to key 

biomechanical indicators not being fully captured. These factors interact with each 

other and affect model performance. 

4.2. Comparison of different time series models 

The experiment compares the performance of four time series models, Long 

Short-Term Memory (LSTM), Transformer, Graph Attention Network (GAT) and 

ST-GCN, in processing various types of action complexity, in order to reveal the 

differences in the ability of different models in modeling spatio-temporal 

dependencies. LSTM processes traditional time series data by capturing long-term 

temporal dependencies through a recursive structure, but it faces a bottleneck in 
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computational efficiency in tasks with higher complexity. Transformer captures 

long-term dependencies through a self-attention mechanism to efficiently process 

sequence data in parallel, and is widely used in time series tasks. GAT effectively 

models spatial dependencies in data through a graph attention mechanism, and is 

suitable for graph structure data analysis. ST-GCN combines graph convolution with 

temporal convolution, and can simultaneously mine the temporal and spatial 

dependency characteristics in data, making it suitable for analyzing complex action 

patterns. In this experiment, the action complexity is divided into 10 levels from easy 

to difficult: Level 1 is standing; Level 2 is standing on one leg; Level 3 is squatting; 

Level 4 is walking in a straight line; Level 5 is running in a small range; Level 6 is 

jogging; Level 7 is fast running; Level 8 is jumping; Level 9 is fast change of 

direction running; Level 10 is full sprinting. The comparison results are shown in 

Figure 5. 

 

Figure 5. Comparison of the accuracy of different models in the action complexity. 

As can be seen from Figure 5, with the increase of the action complexity, the 

prediction accuracy of ST-GCN is always higher than that of other models. In the 

high-complexity action of full sprinting, the accuracy of ST-GCN reaches 85.7%, far 

exceeding other models. The accuracy of LSTM performs better than GAT in low-

complexity actions such as standing and standing on one leg, but it decreases in 

complex actions such as fast change of direction running and full sprinting, and 

finally only 80.2% in the action with a complexity of 10. Transformer and GAT 

perform similarly in most cases, but Transformer has a slight advantage in accuracy 

in high-complexity actions. ST-GCN shows obvious advantages in modeling spatio-

temporal dependencies, indicating that it is suitable for prediction tasks of 

multimodal and complex dynamic data. 

4.3. Correlation between biomechanical characteristics and injury risk 

In athletic injury risk assessment, it is crucial to identify different risk types and 

effectively distinguish them. This experiment uses the Pearson correlation coefficient 

analysis method to evaluate the correlation between the five biomechanical 

characteristics of athletes, namely, joint angle change rate, ground reaction force, 

electromyographic activity, movement speed and movement duration, and the injury 

risk level (low, medium-low, medium, high, and very high) to quantify athletic 

injury risk. This analysis reveals the correlation between each mechanical 
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characteristic and the injury risk level, reflecting the degree of influence of different 

characteristics in each risk level. The results are shown in Figure 6. 

 

Figure 6. Correlation between biomechanical characteristics and injury risk. 

Figure 6 shows that the joint angle change rate, ground reaction force and 

movement speed are prone to high and very high risks. Among them, the joint angle 

change rate shows the strongest correlation of 0.9 in the very high risk level, 

indicating that there is a strong correlation between drastic joint angle changes and 

very high risks. The correlation between medium risk and ground reaction force 

reaches 0.7, indicating that improper use of force is prone to medium risk injuries. 

Improper control of movement speed is prone to low risk injuries, with a correlation 

of 0.4. These results show that there is a close relationship between different 

biomechanical characteristics and athletic injury risks, which provides data support 

for the formulation of athletic injury prevention strategies. 

4.4. Comparison of feature extraction methods 

The experiment compares the performance of five feature extraction methods in 

athletic injury prediction: SPCA, Local Linear Embedding (LLE), t-Distributed 

Stochastic Neighbor Embedding (t-SNE), Independent Component Analysis (ICA) 

and Autoencoder. SPCA applies L1 norm constraints for feature selection, 

effectively reducing redundant data and improving feature interpretability; LLE is 

good at processing nonlinear data structures, but has low computational efficiency; t-

SNE is mainly used for dimensionality reduction and data visualization and is 

suitable for visualization of high-dimensional data; ICA can effectively separate 

independent components in the signal and performs well in processing independent 

features; Autoencoder automatically extracts features through unsupervised learning. 

The experiment compares their performance in five indicators: prediction accuracy, 

feature contribution rate, computational efficiency, model complexity, and 

interpretability, in order to evaluate their applicability and advantages in athletic 

injury risk prediction. The relevant experimental results are shown in Table 3. 
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Table 3. Comparison of different feature extraction methods. 

Method Accuracy (%) FCR (%) Computational Efficiency Model Complexity Interpretability 

SPCA 95.3 85 High Low High 

LLE 92.1 75 Medium Medium Medium 

t-SNE 88.6 70 Low High Low 

ICA 91.4 78 Medium Medium Medium 

Autoencoder 93.2 80 High High Low 

Table 3 shows that the SPCA method has the highest risk prediction accuracy 

of 95.3%, and its FCR also reaches the highest 85%, indicating that it has advantages 

in reducing data redundancy and improving feature representativeness. The accuracy 

and FCR of t-SNE are the lowest, only 88.6% and 70%, indicating that this method 

is not suitable for risk prediction. The performance of Autoencoder is second only to 

SPCA. Like SPCA, it has high computational efficiency, but its model complexity is 

high and its interpretability is low, which limits its application in this regard. By 

comprehensively considering the accuracy, feature contribution rate, computational 

efficiency and interpretability, SPCA is the best method choice in the application of 

athletic injury prevention. 

4.5. Impact of optimization strategy on model performance 

Five optimization strategies are compared in the experiment, which are 

optimized for feature extraction, network structure and data processing, respectively, 

to improve the performance of the athletic injury prediction model. Strategy 1: 

Without optimization in the baseline model: the original SPCA feature extraction 

and ST-GCN modeling are used as the basis for performance comparison. Strategy 2: 

Feature extraction enhancement: by applying L1 regularization in SPCA, the sparsity 

of features is enhanced; redundant information is reduced; the representativeness of 

features is improved. Strategy 3: ST-GCN structure optimization: the ST-GCN 

network structure is adjusted; the number of graph convolution layers is increased; 

the convolution method is improved to optimize the spatio-temporal relationship 

modeling capability. Strategy 4: Comprehensive optimization: combining strategies 

2 and 3, feature extraction and network structure are optimized simultaneously to 

maximize model performance. Strategy 5: Data enhancement optimization: data 

enhancement technology is used to expand the diversity of the training set and 

improve the robustness of the model. The experiment evaluates the effect of each 

strategy by comparing three indicators: damage prediction accuracy, real-time 

feedback delay, and spatio-temporal modeling efficiency. Figure 7 shows the 

comparison results of different optimization strategies on these indicators. 
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Figure 7. Comparison of the impact of optimization strategies on athletic injury prediction performance. 

Figure 7 shows that with the strengthening of the optimization strategy, the 

accuracy of athletic injury prediction shows a significant upward trend, and Strategy 

4 reaches the highest accuracy of 95.3%, which is much higher than other strategies. 

RTFD performs best in Strategy 4, with a delay of only 130 milliseconds, while the 

delay of Strategy 1 is 150 milliseconds, showing the positive impact of the 

optimization strategy on the timeliness of feedback. For TSME, Strategy 4 also 

performs well, with a value of 1.45, which is much higher than the 0.72 of the basic 

model. In contrast, the TSME and feedback delay of Strategy 3 are more balanced 

and robust. Overall, Strategy 4 shows the best performance in terms of accuracy, 

real-time feedback delay, and spatio-temporal modeling efficiency, indicating that it 

has significant advantages in optimizing athletic injury prevention models. 

4.6. Case study 

In a study on athletic injury prevention for professional football players, the 

research team applied the athletic injury risk prediction model proposed in this paper 

that combines statistical analysis and machine learning. In the study, the Vicon 

Vantage V5 3D motion capture system recorded the rate of change of joint angles of 

players when performing specific training movements, the Noraxon Ultium EMG 

electromyography device obtained muscle activity signals, and the Bertec force plate 

system measured ground reaction forces. After wavelet threshold denoising, linear 

interpolation to fill missing values, and normalization, these data formed a high-

quality multimodal biomechanical dataset. Through the SPCA method, the research 

team extracted features that are highly correlated with injury risk, reduced data 

dimensions, and alleviated the interference of redundant information. Subsequently, 

the ST-GCN model modeled these features in space and time, fully explored the 

dynamic relationship and spatial dependence characteristics, and realized the 

prediction of potential injury risks under different movement modes. 

accurately captures subtle changes in movement patterns when faced with 

complex dynamic action sequences, providing each player with a personalized injury 

risk assessment. For a player who was performing high-intensity change-of-direction 

running training, the model identified an abnormal rate of change in the angle of his 

knee joint, and combined the electromyographic signal and ground reaction force 

data to calculate a high injury risk score. Based on this score, the personalized 

strategy generation mechanism determined that the player had technical movement 

defects, mainly manifested in the uneven distribution of mechanical loads on the 

knee joint. Based on this, the system recommended adjusting the player’s training 
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plan, reducing the current intensity, and recommending exercises to strengthen the 

muscles around the knee joint. After receiving the feedback information, the athlete 

adjusted the training method according to the guidance. After a period of time, the 

re-evaluation showed that the risk of injury was significantly reduced, proving the 

effectiveness of the model in practical applications. Throughout the process, from 

data collection to feature extraction to dynamic modeling, the research team 

demonstrated the ability to transform theoretical analysis into practical applications, 

providing theoretical support and technical reserves for intelligent and precise 

research on athletic injury prevention and control. 

5. Conclusions 

The athletic injury prevention method based on SPCA and ST-GCN proposed 

in this paper optimizes feature extraction and dynamic risk prediction through 

multimodal data acquisition. Experiments show that when the number of features 

reaches 20, the model prediction accuracy is stable at 95.3%. Compared with other 

models such as LSTM and Transformer, which have an accuracy of 80.2% and 82% 

respectively in high-complexity action prediction, ST-GCN shows better spatio-

temporal dependency modeling capabilities. The correlation analysis shows that the 

correlation between the joint angle change rate and the risk of very high injury is as 

high as 0.9, which verifies the important role of biomechanical characteristics in risk 

assessment. However, there is still room for improvement in the robustness of long-

term training series and the optimization of targeted strategies for different types of 

sports. Future research will focus on integrating more advanced sensing technologies 

and computing methods to improve data acquisition accuracy and feature extraction 

depth. At the same time, by expanding data sets and adjusting model parameters to 

enhance generalization capabilities, personalized prevention and rehabilitation plans 

can be developed for different sports characteristics, further promoting the intelligent 

and precise development of athletic injury prevention. 
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