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Abstract: Sustainable economies have demand for natural resources (i.e., ecological footprint) 

less than nature’s renewable supply of resources (called biocapacity) to support clean 

production, development and equity in societies. The goal of this study is to identify new 

technologies that can support energy change from fossil fuels to renewable sources directed at 

zero-carbon and sustainable economies having lower environmental pollution and higher social 

well-being. Using data from scientific publications and patents until 2024 and a liner model for 

regression analyses, empirical results reveal that sustainable technologies having rapid growth 

and supporting the transformation of the energy sector, economic system and society are blue 

hydrogen, floating photovoltaic systems, carbon capture storage and utilization, green 

hydrogen and liquid metal batteries. The implications of findings here for sustainable policies 

oriented to new technologies are discussed to have, whenever possible, zero-carbon economies 

directed to long-run sustainable development. The purpose of this study here is basic to support 

sustainable economies with new technologies that provide the greatest level of general well-

being of people with the least amount of resource use and with low environmental harm to 

support the “one health” of people, animals and natural ecosystems (i.e., optimal health results 

considering the interaction between population, zoologic, botanic and total environment 

ecosystems).  

Keywords: sustainable economies; sustainable future; climate crisis; sustainable technologies; 

energy change; zero-carbon; carbon neutrality; renewable energy; sustainable development 

1. Introduction 

The evolution of modern societies with industrial acceleration, population 

growth, conflicts and other crises is generating changes in environment, climate, land 

and biodiversity with deterioration of many ecosystems [1]. Intensive industrialization 

of advanced and developing economies is also increasing carbon emissions associated 

with a rise in atmospheric greenhouse gases and emerging contaminants [2–6]. Human 

societies are inducing main alterations in Earth systems, such as atmosphere, 

lithosphere, hydrosphere, biosphere, etc. [7–11] that are driving the Anthropocene 

[12]. These changes are due to the intensity of human interactions with the total 

environment that have accelerated in recent decades [13–38]. Linstone [39] states that 

the future of socioeconomic systems depends on actions in the short run directed to 

lung-run sustainable development [40–43]. In this perspective, the goal of the 

investigation here is to explore sustainable technologies directed to support economies 

toward energy change based on zero-carbon emissions with low negative impact on 

environmental and human health. 
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2. Theoretical background and framework 

Ayres [44] argues that technological transformations support socioeconomic 

progress [45]. Industrialization and several innovations from 1960s have generated 

economic and population growth [46–49]. However, industrial and technological 

change have also generated urbanization and environmental pollution [14,16]. In fact, 

high population growth increases the extraction of natural resources, the production 

and consumption of goods, and of solid, agricultural and special waste associated with 

high environmental pollution, emerging pollutants and health issues in population [8]. 

Ali et al. [15] show that resource depletion leads to environmental damage with 

consequential climate crisis [50–54]. Meadows et al. [55] argued that resources of the 

Earth may not sustain the food for World population beyond the 2110s, though new 

technologies. One of the solutions can be the circular economies to support a 

sustainable development and avoid severe damages in ecosystems for future 

generations [41,42,45,46,48,49,56–72]. Current economies endeavor to implement 

technological processes for renewable energy but they are not sufficient and also 

expensive investments to satisfy the high energy consumption of modern societies 

[48]. The study here uses the database of Scopus [73] to develop a statistical analysis 

based on a linear model of time series that detects and suggests promising technologies 

directed to sustainability [74]. Analyses of findings and an in-depth discussion provide 

main implications to support innovation policies for ecological change directed to 

sustainability in socio-economic systems.  

3. Research methodology 

3.1. Sources and data collection 

Sources of scientific information are Scopus database [73]. Table 1 shows main 

data about some critical sustainable technologies under study here for supporting 

energy change and sustainability [41,75–85]. As Coccia et al. [86] aptly point out, 

scientific publications (articles, conference papers, etc.) and patents serve as the 

bedrock for scientific and technological analyses of new technological directions. 

Technologies under study here are selected according to current literature in 

environmental and sustainability sciences [41,76–85]. The main goal is to identify 

technological pathways that not only combat environmental degradation but also 

foster ecological change directed to sustainability of socio-economic systems. To 

achieve this ambitious goal, the next sections describe the study design [74].  

3.2. Measure of scientific and technological development 

The scientific development of technologies directed to carbon neutrality in a 

perspective of sustainability is investigated considering articles and patents until June 

2024 collected with the research strings described in Table 1 [86–88]. 
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Table 1. Queries for detecting directions of sustainable technologies. 

Main research strings used to collect data of 

articles and patents of sustainable technologies  
Data analyzed until June 2024 

 Articles Patents 

Technologies and period under study Total number Patent period Total number 

Offshore wind turbine (1976–2024) 10,074 (1998–2024) 5541 

Floating photovoltaic systems (2012–2024) 192 (2010–2024) 77 

Grey hydrogen (2007–2024) 146 (2001–2024) 259 

Green hydrogen (1997–2024) 5352 (1991–2024) 1033 

Blue hydrogen (2016–2024) 265 (1979–2024) 358 

Carbon capture utilization and storage (2010–2024) 1535 (2013–2024) 207 

Smart grids of electricity networks (2006–2024) 480 (2010–2024) 313 

Redox–flow batteries (1979–2024) 5932 (1983–2024) 7792 

Liquid metal batteries (2009–2024) 259 (1981–2024) 226 

Source: Scopus 2024 [73]. 

3.3. Modelling and statistical analysis  

Log variables have normal distribution to perform appropriate statistical analysis.  

Data of Table 1 are examined with a log-linear model: 

log 𝐹𝑖,𝑡 = 𝑎 + 𝑏 time + 𝑢𝑖,𝑡 (1) 

• 𝐹𝑖,𝑡 is scientific products of technology i at the time t 

• a is a constant; b is the coefficient of regression; 𝑢𝑖,𝑡 = error term 

• log is logarithmic with base e = 2.71828. 

Ordinary Least-Squares (OLS) method estimates parameters of Equation (1) with 

the software IBM SPSS Statistics 26®. 

4. New technologies for energy change directed to next sustainable 

economies 

Figure 1 shows trends of publications in some sustainable technologies for the 

change from fossil fuels to renewable energy sources in an effort to reduce CO2 

emissions for ecological transition and sustainable development. The growing 

trajectories are mainly given by technologies of offshore wind turbines, green 

hydrogen, carbon capture and utilization, blue hydrogen, and floating photovoltaic 

systems.  

Figure 2 confirms that the amount of scientific publications and patents in 

sustainable technologies is higher in offshore wind turbines, redox flow batteries and 

green hydrogen (cf., Table 1). 
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Figure 1. Trends of publications in sustainable technologies. 

 

Figure 2. Comparison of patents and publications in sustainable technologies. 

Table 2 shows the estimated relationships based on log-linear model (Eq. 1). The 

higher coefficient of regression is for the technologies of blue hydrogen b = 0.64 (p-

value = 0.01); it indicates that 1-unit change in X (time) corresponds to an expected 

increase in Y of e0.64 = 1.90, i.e., 90%. Other emerging technologies having rapid 

temporal growth are floating photovoltaic systems and carbon capture and utilization 

b = 0.35 (p-value = 0.001), as a consequence e0.35 = 1.42: 1-unit change in X (time) 

corresponds to an expected increase in Y of 42%. Promising sustainable technologies 

having an acceleration of scientific knowledge and advances are also green hydrogen 

b = 0.27 (p-value = 0.001), every year this technology increases by 31% and finally 

liquid metal batteries b = 0.25 (p-value = 0.001), every year this sustainable 

technology increases by 28%. 
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Table 2. Results of regression analysis based on scientific production in sustainable 

technologies on time. 

Technologies Coefficient B Constant F-test R2 

Offshore wind turbines 0.17*** −332.74*** 218.32*** 0.85 

Floating photovoltaic systems 0.35*** −697.83*** 38.94*** 0.80 

Grey Hydrogen 0.22 −443.71 5.16 0.56 

Green Hydrogen 0.27*** −541.44*** 89.76*** 0.81 

Blue Hydrogen 0.64** −1292.24** 17.24** 0.78 

Carbon Capture and Utilization 0.35*** −699.62*** 88.60*** 0.88 

Smart Grid for Electricity Network 0.15** −289.52** 13.62** 0.45 

Redox-flow batteries 0.16*** −316.80*** 307.08*** 0.88 

Liquid Metal Batteries 0.25*** −491.67*** 62.74*** 0.83 

Note: Dependent variable: Log publications of technology i; Explanatory variable: time, year; *** 

significant at 1‰; ** significant at 1%; * significant at 5%. F is the ratio of the variance explained by the 

model to the unexplained variance. R2 is the coefficient of determination. 

5. Analysis of results and discussions  

Results, using the estimated coefficients of regression in Table 2, reveal, unlike 

Figure 1 that sustainable technologies having a rapid growth are: 

• blue hydrogen process; 

• floating photovoltaic technological systems [89]; 

• carbon capture storage and utilization [90,91]; 

• green hydrogen technology; 

• liquid metal batteries. 

Other new sustainable technologies having the potential of growth and that are in 

the emerging phase of evolutionary growth are: 

• redox-flow batteries; 

• smart grids for electricity delivery [85,92]. 

As the future is coming fast, societies will be dealing with a vastly different 

climate and energy landscape soon. The study here shows that new technologies 

directed to carbon neutrality that can reduce environmental damages are mainly based 

on CO2 capture and utilization, blue hydrogen, photovoltaic solar plants, etc. 

Moreover, these technologies are more and more basic for clean production [93–95]. 

Results show that energy transition for sustainable economies is associated with 

scientific advances directed in specific sustainable technologies, just mentioned, that 

can improve the total environment. However, the negative side of renewable energy 

sources is that they are intermittent, such as a limited number of hours of sunlight per 

day, variability of wind speed over time and space, such that supply and demand can 

generate continuous disequilibrium. Sustainable technologies discussed here can 

improve some aspects for decarbonization in critical industrial sectors and a systemic 

strategy for sustainable economies and development is based on: 

• energy policy directed to cost-effective renewable energy sources and clean 

technologies that reduce environmental pollution and factors associated with 

climate crisis to maintain, whenever possible, natural ecosystems. 
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• technological policies directed to innovations for reducing CO2 emission, 

improving natural resource efficiency and expanding sustainability in industrial 

sectors to support employment, income, environment, health and wellbeing of 

people. 

However, a long-term strategy for sustainable economies also needs good 

governance, efficient institutions and a national leadership, involving all social 

communities to reduce environmental pollution and running out of natural resources 

[55,96] directed to the long-run goal of ‘one health’ of people, animals and natural 

ecosystems [97–99]. 

6. Concluding remarks 

Main findings here reveal that some sustainable technologies have rapid 

technological evolution, such as blue hydrogen processes, floating photovoltaic 

technologies and carbon capture storage and use and are promising for carbon 

neutrality in economics. In order to advance sustainability and reduce environmental 

issues related to the shortage or exhaustion of normal assets, these new technological 

directions must be progressively taken after [96,100]. Subsequently, in order to 

guarantee that human society may proceed for a future ecological transition, financial 

frameworks ought to back the sustainable innovations that are the subject of this 

investigation to minimize natural debasement and ensure the biosphere [97,99,101]. 

The progression of some technologies in sustainable directions, as well as 

commercialization of related innovations, can be quickened by public and private 

funding and appropriate inventive to R&D investments in different industrial sectors 

[102–104]; in short the policymakers should design R&D strategies toward promising 

innovations (described here) related to ecological transition and energy change from 

fossil fuels to renewable energy sources to support sustainable economies [105,106]. 

These R&D strategies can be connected to energy and financial arrangements that 

foster positive interactions between human society inside cities, the environment and 

common assets in large urban agglomerations for circular and sustainable economies. 

In other words, institutional and economic change should be directed to financial 

sustainability in technologies protecting the total environment [107,108]. 

In common, countries ought to create and actualize long-term sustainable 

strategies that reduce more and more coal and petroleum-based economies. Hence, 

new innovation avenues should foster large circular economic systems, which improve 

the ecosystem for current and future generations’ well-being, and support 

sustainability in economic and social development [109,110]. 

6.1. Limitations 

Conclusions here are, of course, tentative. This study shows some interesting but 

preliminary results in forecasting new directions in sustainable technologies. Although 

this paper yields a few captivating insights, some limitations are that: 1) scientific 

outputs and research topics can only detect certain aspects of the ongoing dynamics of 

sustainable technologies; 2) statistical analyses consider results and implications based 

on specific technologies directed to sustainability; 3) proposed framework analyzes 

some technologies, but discarding interesting insights from other technological fields 
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for ecological transition; 4) finally, other social, institutional and economic factors can 

influence the adoption and implementation of sustainable technologies that deserve to 

be investigated in future researches. However, although these limitations, the results 

here clearly illustrate the dynamics of some technologies that can drive ecological 

transition and sustainability in future socioeconomic systems. 

6.2. Ideas for future research 

There is a need for much more detailed research into the investigation of scientific 

and technological directions for ecological transition and sustainability. The precise 

areas for further investigations have to focus on:  

1) complementary analyses based on a lot of patents that provide a more 

comprehensive view of evolutionary pathways in different technologies and 

related scientific and innovative ecosystems directed to sustainability in society. 

2) confounding factors, such as the level of public and private R&D investments, 

international collaboration in specific sustainable technologies, etc. These factors 

can explain other aspects of emerging research fields and technologies for 

ecological transition. 

3) A higher variety of scientific and technological fields that clarify the overall 

ecological transition. 

However, difficulties in the analyses of technological fields directed to future 

sustainability can be synthetized by Wright [109] that properly claims: “In the world 

of technological change, bounded rationality is the rule”. To conclude, these findings 

here extend the scientific and technological information directed to clarify sustainable 

technologies that support ecological transition [111–152]. However, future studies 

should be directed to intensive and progressing investigations that are required to 

upgrade the sustainable expectations about new technology that nations must design 

and implement in next industrial systems to moderate environmental degradation and 

foster sustainability of the total environment and well-being in society [153–184]. 

Conflict of interest: The author declares no conflict of interest. 
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