
AI Insights 2025, 1(1), 939.
https://doi.org/10.62617/aii939

Article

Path planning for unmanned naval surface vehicles

Daniel G. Schwartz

Department of Computer Science, Florida State University, Tallahassee, FL 32306, USA; schwartz@cs.fsu.edu

CITATION

Schwartz DG. Path planning for
unmanned naval surface vehicles. AI
Insights. 2025; 1(1): 939.
https://doi.org/10.62617/aii939

ARTICLE INFO

Received: 13 February 2025
Accepted: 28 February 2025
Available online: 2 April 2025

COPYRIGHT

Copyright © 2025 Author(s).
AI Insights is published by Sin-Chn
Scientific Press Pte. Ltd. This work is
licensed under the Creative Commons
Attribution (CC BY) license.
https://creativecommons.org/
licenses/by/4.0/

Abstract: There nowadays is a myriad of approaches to real-time avoidance of fixed obstacles
for unmanned surface vehicles (USVs) and, to a lesser extent, also the task of avoiding
moving obstacles such as boats, ships, swimmers, and other USVs, but both topics still present
challenges. This paper offers novel approaches to both of these problems. It uses a combination
of a global path planner, which finds a path from a start point to a goal point that avoids fixed
obstacles (given that their locations are known in advance), and a local path planner, which can
circumnavigate a moving obstacle (as well as any previously unknown fixed obstacles). The
global planner is novel in that it employs a combination of three path planners, one known in
the literature as Grassfire, one that is a new modification of Grassfire, and one that is a new, and
arguably more intuitive, version of the well-known Probabilistic Roadmap. The local planner
is novel in that it employs a higher-level decision logic based on its observations regarding the
direction of movement of the obstacle relative to the USVs global path. This logic enables
the USV to determine the best strategy for avoiding the obstacle by systematically routing the
vehicle behind the obstacle rather than running parallel to it until the opportunity to pass appears.
Simulations are provided that validate these claims. For comparison with other systems, the
simulations include an implementation of the well-known D* algorithm, and the discussion
covers additional dynamic path planning systems, which, like D*, do not necessarily route the
vehicle behind the moving obstacle.

Keywords: path planning; obstacle avoidance; unmanned vehicles; autonomous vehicles;
probabilistic roadmap; recursion-based probabilistic roadmap

1. Introduction

There nowadays is a myriad of approaches to robot path planning, including many
concernedwith unmanned surface vehicles (USVs). This paper offers another approach,
one which offers advantages over those that have gone before. Specifically, this work
addresses the problem of routing a USV through an environment that is populated with
both fixed andmoving obstacles (ships, boats, swimmers, other USVs) and, with regard
to the latter, routing the vehicle behind the obstacle, rather than in front of or alongside
it, whenever this is appropriate, thereby avoiding the possibility of a collision. This
invokes a higher-level decision logic that takes into account the position and trajectory
of the obstacle relative to that of the USV.

This work specifically addresses surface vehicles traveling on land or water,
inasmuch as it considers a two-dimensional operational environment. However, the
methods developed here can easily be generalized to three dimensions, so that the same
methods can apply also to both aerial and underwater vehicles.

The solution method uses a combination of a global path planner, which finds
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a path from a start point to a goal point while avoiding known fixed obstacles, and
a local path planner, which can detect and circumnavigate a previously unknown
moving obstacle. The global planner is novel in that it employs a combination
of three path planners known as Grassfire (GF), Modified Grassfire (MGF), and
Recursive Probabilistic Roadmap (r-PRM). These work with a cellular grid overlaying
the operational environment. Grassfire (also known as Flood Fill, Wave Front, and
originally as Cost Wave Propagation) was introduced by Dorst [1]. This finds a
least-cost path that follows cell grid lines. An advantage of GF is that it is guaranteed
to find a path from the start to the goal, as long as such a path is possible. A drawback
is that, in following grid lines, it entails numerous right-angle turns. This motivated
augmenting GF with MGF and r-PRM so as to produce a smoother path.

Another contribution of this paper is the r-PRM algorithm, which comprises a
recursion-based version of the Probabilistic Roadmap (PRM) due to Kavraki et al. [2].
PRM has enjoyed a wide variety of applications. The newer version being presented
here is, in our opinion, intuitively simpler and easier to understand, and it typically
is faster. It does have the limitation, however, that the length of the path that can be
generated depends on the available size of the computer’s runtime stack. This limitation
can be overcome, however, by converting to an iteration-based implementation, as
discussed in Section 5 (last paragraph).

Both PRM and r-PRM algorithms work with an operational environment
containing fixed obstacles and seek to find an obstacle-free path from a given start
node to a goal node. They both begin with a random sampling of the obstacle-free
space, then use this sampling to create a graphical network reaching from the start to
the goal, and then apply Dijkstra’s algorithm [3] to find the shortest path through this
network. The graphical network is termed the roadmap. Both methods require that
the sample set be sufficiently large to provide a connected obstacle-free map, and can
fail if it is not. The two algorithms differ in how the roadmap is constructed. If the
sampling provides a complete map from the start to the goal, both algorithms find a
path, and their results are essentially equivalent.

MGF is a simple modification of GF that includes diagonals through grid cells.
This can produce a shorter path than GF, but it has the drawback that it can run
dangerously close to, actually touching, the fixed obstacles. In our simulation, this
has been addressed by adding a one-cell margin to the fixed obstacles for the purposes
of both GF and MGF.

Once the GF and MGF paths have been generated, one then takes the polygon
formed by these and, within this, applies r-PRM. This produces the desired global path.

The local path planner is triggered when the USV comes into close proximity with
a moving obstacle. It is assumed that the algorithm is implemented on-board the USV
and works in conjunction with sensors that can detect the position and direction of
movement of the moving obstacles. The decision regarding how to avoid the obstacle
considers (i) whether the obstacle is on the left or right of the global path, (ii) whether
the obstacle is moving toward or away from the global path, and (iii) if the obstacle is
moving toward the global path, whether it is moving toward a point behind or in front
of the USV. The details of this logic and how it is implemented are provided in the
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following. We believe that this approach is new, especially in that it takes into account
the direction of movement of the obstacle, rather than simply treating it as a newly
discovered fixed obstacle.

The latter approach is taken by most other systems that address path finding in
dynamic environments. These include the well-known D* algorithm [4], which, for
illustrative purposes, has been implemented along with our own system in the following
simulations. This also applies to systems based on potential field methods, such as E*
[5]. It deserves mentioning that such systems do obey the COLREGS [6] “Rule 15,
Crossing Situation (a) When two power-driven vessels are crossing so as to involve
risk of collision, the vessel which has the other on her starboard side shall keep out
of the way and shall, if the circumstances of the case admit, avoid crossing ahead of
the other vessel”. Note, however, that this rule leaves open exactly how the USV is
supposed to do this.

The present system adopts the policy of always routing theUSVbehind themoving
obstacle whenever the obstacle is detected as moving across the path of the USV.
In this respect, however, it deserves mention that the methods devised in [7], which
are implemented in the well-known MOOS-IvP simulation framework [8], allow for
the USV to cross in front of the obstacle when this is warranted by their relative
trajectories and speeds (velocities), i.e., when the obstacle is moving slowly relative
to the USV. Moreover, whereas [9] does not discuss global path planning or the task
of circumnavigating a moving obstacle, it does generally provide a more fine-grained
and detailed analysis of other requirements for a local planner, e.g., how to respond
when the USV is overtaking a moving obstacle from the rear. For this reason, it would
be appropriate for a future work to incorporate those algorithms into the decision logic
provided by the present framework.

This paper combines and expands work previously published as [10] and [11]
and which comprises the essential content of Chowdhury’s doctoral dissertation [12].
The present author served as Chowdhury’s doctoral advisor. A five-minute video of a
simulation run and the complete Python code for the simulator can be downloaded at
https://github.com/danielgschwartz/USV_Simulation.

The organization of the paper is as follows. Section 2 discusses related research
in path planning and autonomous vehicles. Section 3 describes the original PRM
algorithm. Section 4 presents the r-PRM algorithm. Section 5 provides experimental
results comparing the twomethods. Section 6 discusses the global path planner. Section
7 discusses the local path planner. Section 8 provides some experimental results
that shows how the proposed local path planner with r-PRM can serve as a complete
on-board path planner for real-time obstacle avoidance. This compares the results of
our system with that of D*. Section 9 discusses prospects for future research. Section
10 provides some concluding remarks.

2. Related work

Some well-known path finding algorithms are A* [13], D* [4], Rapidly-Exploring
Random Trees [14], Potential Field Method [15], as well as the two referenced in the
foregoing as GF and PRM.
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As mentioned, PRM was introduced by Kavraki et al. [16]. Kavraki et al. [2]
further showed that PRM is probabilistically complete in the sense that the probability
of failure decays to zero exponentially with the number of samples used in the
construction of the roadmap. Amato et al. [17] introduced OBPRM: Obstacle-based
PRM, by incorporating a visibility graphs sampling method [18] with PRM, which
reduces the burden of the high amount of collision checking. Hsu et al. [19] resolved
the issue of dynamic threats with PRM by introducing the concept of a “milestone”,
which creates a real-time graph connecting the start and goal points. Yan et al. [20]
implemented the octree-structure PRM which combines PRM with a corridor map
sampling method [21]. Khatib [22] introduced the potential field method (PFM) for
solving the path planning problems. Such methods have the drawbacks that they are
incomplete and prone to drop into local minima. Connolly et al. [23] resolved this local
minima problem by incorporating the Laplace equation with PFM. Similarly, Rimon
et al. [24] combined PFM with a Morse function having a single minimum to form a
stable robot navigation method, thus jumping out of the local minima. Barraquand and
Latombe [25] showed that a randomized path planner (RPP) can solve the local minima
problem by executing random walks. However, the probability that any random walk
finds its way through a narrow passage is almost zero.

LaValle [14] implemented the sampling-based Rapidly Exploring Random Trees
(RRT) as a tool for the path planning problem and, subsequently, Yershova et al. [26]
proposed an improved version of RRT calledDDRRTwhich overcame the local minima
problem of RRT. Similarly, Karaman and Frazzoli [27] proposed an improved version
of RRT known as Rapidly Exploring Random Graph (RRG). RRG allows multiple
robots to operate simultaneously. Karaman and Frazzoli further improved RRG by
pruning bad connections from the RRG graph, resulting in a tree known as RRT-Star
(RRT*). RRT* has low time complexity compared to RRT and RRG. Erinc and
Carpin [28] combined a genetic algorithm (GA) with the RRT method to achieve a
faster convergence speed for the path planning problem. However, RRT cannot do
replanning, since it is a single query approach that always returns a single path to the
goal instead of many feasible paths. Shamos and Hoey [29] first proposed the Voronoi
diagram; subsequently, Luchnikov et al. [30] improved its construction method and
applied the improved version of Voronoi diagrams for the 3D path planning problem.
Roos and Noltemeier [31] further improved the Voronoi diagram by adding a bound to
the Voronoi channels to deal with moving objects, thus making the Voronoi diagram
suitable for path planning in a 3D space that has both fixed and moving obstacles. This
approach generates a global graph or local graph as with RRG and PRM, but it cannot
generate the shortest path by itself. Liu and Zhang [32] proposed an improved version
of the Voronoi diagram combined with Dijkstra to find the shortest path for the path
planning problems.

Path planning algorithms (both global path planners and local path planners) can be
combined formutual benefit and significantly impact the outcome of amission planning
operation. Dalpe and Thein [33] did an exploratory study to determine which path
planning algorithm is a good fit as a global path planner when integrating with a local
path planner. Later Dalpe et al. [34] implemented a hybrid global and local path planner

4



AI Insights 2025, 1(1), 939.

using the combination of A-star (A*) [35] and potential field method (PFM) [22] where
the former acts as a global path planner and latter acts as local path planner.

Chowdhury and Schwartz have previously explored various combinations of some
of these for path planning for unmanned underwater vehicles (UUVs) with special focus
on the task of avoiding moving obstacles (boats, ships, etc.) [36,37]. Since that work
has not considered depth information, however, it more correctly applies to surface
vehicles or underwater vehicles operating at a constant depth.

In the ocean environment, factors such as weather, waves, currents, international
regulations for preventing collisions at sea (COLREGS), and several other challenges
must be taken into account. In this regard, the potential field method (PFM) [22,38,39]
has been chosen by many researchers because of its elegance and simplicity. Song et
al. [40] combined PFM with a multi-layered fast marching (MFM) method to deal
with factors like currents and wind. However, sometimes PFM gets stuck in a a local
minimum where the USV becomes trapped inside a U-shaped obstacle, or when facing
a large wall-like obstacle [41,42].

The rolling window method [43–45] is commonly used to deal with the local
minimum conditions. The main idea is to establish a dynamic window based on the
current location of the USV and have the path planner only model the portion of the
mission environment that falls into the window area. This approach can reduce the
amount of model data necessary to meet real-time requirements. Promising results
were found when the local path planner using the rolling window method is combined
with other methods such as collision prediction in [9, 46], as well as a fuzzy control
method [47]. However, one still has the local minimum problem, especially when the
size of the trap/local minimum is larger than the dynamic window size or the range of
the USV’s sensors. In this case, the USV may wander in the trap and waste energy for
an extended period of time.

Thus, a local path planner needs robustness with respect to these challenging
factors. Several works have addressed this [48–50]. A key issue for the local planner is
to deal with real-time obstacle avoidance. Miotto et al. [51] has proposed an on-board
path replanning process for the Manta test vehicle which uses D* algorithm [4] for path
replanning to avoid the moving obstacles. That approach can avoid moving obstacles,
but it does not necessarily route the USV behind the obstacle.

3. The PRM algorithm

Let us begin with an exposition of the original PRM paper [16]. What is presented
here is a detailed description of our version of their algorithm, which, for the purposes
of a Python implementation, incorporates some minor modifications.

The work begins with a configuration space, where each point in this space
represents a configuration of the robot. The objective is to construct a path through
this space from some start configuration to a goal configuration. In their examples,
the robot is an articulated robotic arm with an arbitrary number of revolute joints.
In our application, the configurations are the locations of a USV in some predefined
operational environment. The details of this space should be immaterial, however,
as the algorithm as presented is generic and should apply equally to both kinds of
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configurations.
It is assumed that there is a distancemeasure δ giving the distance between any two

configurations. The examples take the operational environment as a two-dimensional
space with the usual Cartesian coordinates, and it takes δ as the Euclidean distance.

The operational environment is divided into a free space and an obstacle space,
where the latter are configurations that are to be avoided. So, more exactly, the objective
is to find a path from the start node to the goal through the free space, so as not to collide
with any obstacles.

For purposes of the present operational environment, it is natural to refer to the
configurations as points or nodes identified by their (x, y) coordinates.

The first step of the PRM process is to take a random sampling of points in the free
space. The application further requires that all such selected points be some specified
min distance from any obstacles. This is called the sample set. These sample points
exclude the start node and the goal node. The sample set is configured as an indexed
list, S. The start node is inserted at the beginning, and the goal node is appended to the
end.

The next step is to create the road map. Pseudocode describing the road map
construction step, adapted from [2], is shown in Algorithm 1, where “no collision”
means that the edge (c, n) does not intersect any obstacle.1

Algorithm 1: PRM Roadmap Construction Step
input :Sample points S
output :Roadmap E
1: N ← first sample point
2: E ← ∅
3: for each next point in S

4: c← the next point in S
5: Nc ← a set of candidate neighbors of c

chosen from N
6: N ← N ∪ {c}
7: for all n ∈ Nc, in order of increasing

δ(c, n) do
8: If (c, n) ̸∈ E ∧ no collision then
9: E ← E ∪ {(c, n)}

Thus, the roadmap is defined as a graphical network consisting of a collection
of nodes, N , and a collection of edges, E, connecting the nodes. As indicated in the
pseudocode, N is initialized with the first sample point in S (which has been specified
to be the start node). Then, for each next point in S, find its k nearest neighbors in
N (or as many as possible if there are fewer than k points in N ), and, for each such
neighbor, if the edge connecting the point to the neighbor does not intersect an obstacle,
this edge is added to E. This continues point-by-point through the set S until the goal
node is reached. When this happens, E is the road map.

Once such anE has been constructed, where |S| is the size of S, create an |S|×|S|
reachability matrix and prefill it with the Python null value None. Then record all the
road map edges into this matrix by putting the distances between the edge end points
into the corresponding matrix cells. Specifically, where (p1, p2) is an edge in E, and
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a and b are the indices of p1 and p2 in the list S, the matrix cells (a, b) and (b, a) are
assigned the value δ(p1, p2). Then apply Dijkstra’s algorithm [3] to this matrix. This
well-known algorithm takes as input any connected graphical network (here represented
as a reachability matrix) and any node in that network, and finds the shortest path from
that node to each of the other nodes. The application starts with the designated start
node and allows the algorithm to run until it reaches the designated goal node and then
returns just this discovered path from the start to the goal. For the simulation result
shown in Figure 1, the PRM sample set size was 500, including the start and goal
nodes, and the number of neighbors k was 16. This algorithm typically produces an
acceptable path from the start to the goal, although it might not be optimal (shortest).

4. The recursion-based PRM algorithm

As with PRM, this begins with an operational environment that is divided into a
free space and an obstacle space, some designated start and goal nodes, and a distance
measure δ, which again is the Euclidean distance. Exactly as in the foregoing, create a
sample set with inserted start and end nodes and configure it as an indexed list S. Then,
also as before, create an |S|×|S|matrix, to serve as a reachability matrix, and prefill all
the cells with the Python null valueNone. Then, starting with the start node, proceed to
fill in cells of the matrix according to a recursive procedure as follows. Given a focus
node p, the start node being the first focus node, find its k nearest neighbors, p1, . . . , pk,
in the sample set, and that have not already been visited. If there are not k such points
available, take as many as you can find. Ignore those for which the connecting edge
intersects an obstacle. Let a be the index of p in S. For each neighbor p′, let b be the
index of p′ in S, and assign the matrix cells (a, b) and (b, a) the value δ(p, p′). Now
recursively repeat this with each pk as the focus node. Keep doing this until one of the
neighbors is the goal.

The reachability matrix at this point describes a network of links connecting the
start node to the goal and serves as the road map. This is shown in Algorithm 2, where
S is the sample point list, R is the reachability matrix, and δ is the distance measure.
Next apply Dijkstra’s algorithm as before to find the shortest path through this network
from the start to the goal.

As with the PRM simulation, the r-PRM simulation employs a sample set of 500
including the start and goal nodes, and the number of neighbors used in creating the
reachability matrix was 16. For each run, the simulation used the same sample set for
both PRM and r-PRM so as to compare their results.

Also as with PRM, this process can fail to find a path from the start to the goal if
there are not enough sample points to create an obstacle-free path. However, this can be
remedied as with PRM by increasing the size of sample set. Figure 1 shows a typical
run of the two algorithms in a somewhat complex operational environment. Here the
results are almost identical, but this is often not the case. Depending on the random
samplings, PRM and r-PRM can produce very different paths. Nonetheless, as shown
in Table 1, the path lengths are essentially identical, for which reason the two methods
are considered to be equivalent.
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Algorithm 2: r-PRM roadmap construction step
input :Sample points S
output :Roadmap R
1: R←∞
2: p← S[0]
3: a← index of p in S
4: For all unvisited k nearest neighbors p′ of p do
5: If (p, p′) not intersect an obstacle then
6: b← index of p′

7: Ra,b ← δ(p, p′)
8: Rb,a ← δ(p, p′)
9: If p′ is goal then
10: break
11: For all unvisited k nearest neighbors p′ of p do
12: p← p′

13: a← index of p in S
14: Go to line 4

Table 1. PRM vs r-PRM path length in a maze-like operational environment.

No. of Observationa
On Maze-like Environment

PRM Path Length (m) r-PRM Path Length (m)

n = 250, k = 8 18.44 18.47
n = 500, k = 16 18.49 18.34
n = 750, k = 32 18.23 18.20
n = 1000, k = 64 18.20 18.22
n = 1250, k = 128 17.92 17.92
n = 1500, k = 256 17.89 17.89

Overall
Mean = 18.20 Mean = 18.17
STD = 0.25 STD = 0.23

a n is the size of the sample set, and k is the number of nearest neighbors joined to each sample point.

5. Simulation results comparing the two methods

Figure 1 shows a typical run of the two algorithms in a somewhat complex
operational environment. It usually is the case that the algorithms produce essentially
the same path. Figures 2 and 3 show the road maps associated with the respective runs
of PRM and r-PRM producing the results in Figure 1. The algorithms can produce
divergent, but more or less equivalent, paths as shown in Figures 4 and 5. Figure 6
shows a result with a different choice of start and goal nodes. Figure 7 shows another
run with the same start and goal as in Figure 6. This has r-PRM producing a somewhat
better result than PRM. However, other runs have shown the opposite. Figure 8 shows
an application where the sample set is from a constrained polygon formed by the two
path finding algorithms GF and MGF. Note that, in this context, PRM and r-PRM
produce almost identical results.
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Figure 1. PRM versus r-PRM.

Figure 2. PRM roadmap.
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Figure 3. r-PRM roadmap.

Figure 4. PRM versus r-PRM.
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Figure 5. PRM versus r-PRM.

Figure 6. PRM versus r-PRM.
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Figure 7. PRM versus r-PRM.

Figure 8. PRM versus r-PRM in a constrained polygon.

Thus, overall, the two methods are considered to be essentially equivalent, with
the choice of which to employ being a matter of personal preference. Our preference
is for r-PRM because it is conceptually simpler and its behavior is easier to visualize.
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Also, as shown in the following, it usually is faster.
Table 1 shows the PRM vs r-PRM path length performance in the operational

environment of Figure 1. Table 2 shows their respective roadmap generation times
in the same environment. Figure 9 shows an alternative representation of Table 2.
This explains how the roadmap generation time depends on n and k so that a user can
decide how large to make n and k given the available computing resources. The system
resource running timeout was set to 1000 s for the roadmap generation time. The results
show that PRM failed (i.e., the system crashed due to system resource timeout) but
r-PRM did not, when considering relatively a large value such as for n = 2000 and k =
750.

Figure 9. PRM versus r-PRM roadmap generation time.

Table 2. PRM vs r-PRM roadmap generation time in a maze-like operational
environment.

No. of Observationa
On Maze-like Environment

PRM Roadmap r-PRM Roadmap
Generation Time (s) Generation Time (s)

n = 250, k =8 0.40 0.48
n=500, k =16 2.35 2.05
n=750, k =32 11.43 6.72
n=1000, k =64 47.18 19.68
n=1250, k =128 146.97 52.75
n=1500, k =256 354.22 153.94

Overall
Mean = 93.76 Mean = 39.27
STD = 139.06 STD = 59.438

a n is the size of the sample set, and k is the number of nearest neighbors joined to each sample point.

One caveat, however, is that r-PRM is limited by the depth of recursion allowed by
the programming language and system on which the algorithm is being implemented.
We chose Python because of its packages for creating graphics (the figures). But Python
has a recursive depth limit of 1000, which makes it unsuitable for large sample sets.
In languages such as C++ and Java, on the other hand, the recursive depth is limited
only by the size of the runtime stack, and this can be adjusted to maximally utilize the
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available memory.
Having said this, however, it is known that any recursive algorithm can be

formulated using only iteration. For example, see [52]. Thus, the same methodology as
described here can be implemented in such a way as to overcome the limitation imposed
by the depth of recursion. In addition, an iterative version may be expected to run faster
as it eliminates the overhead of successive recursive method calls. Thus, this is a further
way in which the performance may be improved. The recursive approach was adopted
here because it lends itself more intuitively to this particular application.

6. Global path planner

The global path planning algorithm has three phases: I, Polygon generation;
II, Roadmap generation within the polygon (i.e., applying r-PRM); and III, Optimal
pathfinding from the roadmap inside the polygon (i.e., applying Dijkstra’s algorithm).
Pseudocode for the sequential execution of these phases is shown as Algorithm 3.

Algorithm 3: Global path finding
input :worldmap, start, and goal
output :global path returned: A list of x and y coordinates formed a route from start to goal

1 path1 ← GF (worldmap, start, goal) {4-neighbor connectivity};
2 path2 ←MGF (worldmap, start, goal) {8-neighbor connectivity};
3 pn← Polygon(path1 + path2);
4 while pn.area do
5 sample_x← [] {empty_list};
6 sample_y ← [] {empty_list};
7 obkdtree← scipy.spatial.cKDTree(np.vstack((ox, oy)).T ){ox, oy are obstacle xy-coordinates};
8 while len(sample_x) < MAX_SAMPLES do
9 point_in_poly ← get_random_point_in_polygon(pn);
10 px, py ← np.array(point_in_poly);
11 dist, ind← obkdtree.query((np.array([px, py])
12 .reshape(2, 1)).T, k=1);
13 if dist[0] >= robot_size then
14 sample_x.append(px);
15 sample_y.append(py);

16 fskdtree← scipy.spatial.cKDTree(np.vstack((sample_x,
17 sample_y)).T);
18 rprm_road_map← create_rprm_road_map_matrix((start[0],
19 start[1]), sample_x, sample_y);
20 if path← dijkstra_search(start, goal, rprm_road_map) then
21 break;
22 return path {global path returned};

6.1. Phase I: Polygon generation
Line 1 of Algorithm 3 calls the GF algorithm, the details of which are shown in

Algorithm 4 and are discussed in the following. Line 2 calls the MGF algorithm, also
discussed in the following. Line 3 combines the GF andMGF results to form the desired
polygon.

14



AI Insights 2025, 1(1), 939.

Algorithm 4: Grassfire_Algorithm with 4-neighbor connectivity
input :worldmap, start, and goal
output :path returned: A list of x and y coordinates formed a route from start to goal

1 closedlist← set(); closed_list← {}; oheap← [];;
2 neighbors← [(0, 1), (0,−1), (1, 0), (−1, 0)] {4-neighbor connectivity};
3 distance← {goal : 0};
4 heapq.heappush(oheap, (distance[goal], goal))
5 while oheap do
6 current← heapq.heappop(oheap)[1] ;
7 if current == start then
8 path← [];
9 while current in closed_list do
10 path.append(current);
11 current← closed_list[current];
12 return path;

13 closedlist.add(current);
14 forall i, j in neighbors do
15 neighbor ← current[0] + i, current[1] + j;
16 temp_distance← distance[current] + 1;
17 if 0 <= neighbor[0] < worldmap.shape[0] then
18 if 0 <= neighbor[1] < worldmap.shape[1] then
19 if worldmap[neighbor[0]][neighbor[1]]

>= 1 then
20 continue{Neighbor: Inside the worldmap and raised collision with Obstacle or Buffer};

21 else
22 continue{Neighbor: Beyond the worldmap’s Y-bound};

23 else
24 continue{Neighbor: Outside the worldmap’s XY-bound};
25 if neighbor in closedlist then
26 continue;
27 if neighbor not in [i[1] for i in oheap] then
28 closed_list[neighbor]← current;
29 distance[neighbor]← temp_distance;
30 heapq.heappush(oheap,
31 (distance[neighbor], neighbor));

Both GF and MGF work with a cellular grid overlaying the operational
environment. Our simulations, shown in the following figures, used a 60 × 60 grid.
The cells are divided into an obstacle space, colored blue, and a free space, colored
grey. Path finding works with two designated grid points that will serve as start and
goal nodes. GF begins at the goal node, assigning it a distance value of 0. Then it
assigns the value 1 to each of the goal’s four free-space neighbor points, i.e., the ones
connected to the goal by grid cell edges, but excluding points that belong to obstacles.
Then, the free-space neighbors of each of these new points that have not yet been
assigned a value are assigned the value 2. And so on, at each step assigning the new
nodes the value of the current node +1, until this process reaches the start node. Then,
starting with the start node, the GF path is formed by proceeding backwards toward
the goal by selecting nodes with progressively smaller distance values. Note that such
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a path will always be found, as long as it is possible to reach from the goal to the start
via the free space, and this will be a shortest possible path that follows grid cell edges.

MGF is essentially identical to GF, except that it follows diagonals through cells as
well as cell edges. Thus, GF and MGF are distinguished from each other simply in that
GF uses 4-neighbor connectivity, while MGF uses 8-neighbor connectivity. MGF has
the advantage that it produces a path that is shorter than GF, but it has the disadvantage
that it can run dangerously close to, actually touching some of the obstacles. Therefore,
to prevent the latter, a 1-cell margin, colored grey, has been added to all the shown
obstacles for purposes of these two algorithms. This has the effect of creating a 1-cell
buffer around all the designated obstacles. The world map that is input to GF and
MGF is a 60 × 60 array having 0 to designate free-space grid points, 1 to designate
obstacle-space grid points, and 2 to designate buffer points.

The pseudocode shown in Algorithm 3 should be self-explanatory to anyone that
is familiar with Python.

6.2. Phase II: Roadmap generation within the polygon
In this phase, a roadmap is created within the polygon created in Phase I. The

polygon area is first sampled in lines 4 through 15 of Algorithm 3 . Here ox and oy are
the lists of x and y grid coordinates of the points in the obstacle space. These are used
to construct a k-d tree called obkdtree. The k-d tree is a well-known data structure due
to [4] that facilitates nearest-neighbor searches. MAX_SAMPLES is a predetermined
number of sample points to be selected. Random points within the designated polygon
are chosen, and each is checked to make sure it is at least a predetermined robot_size
distance from any obstacle. Our simulation selected 500 such points. The start node
and goal node are added to this set. sample_x and sample_y are indexed lists of the x
and y coordinates of these points. These are then encoded in a k-d tree called fskdtree
in line 16.

The roadmap is generated in line 18 by calling Algorithm 5 . This incorporates
the functionality of Algorithm 3 , discussed in Section IV. The pseudocode shown in
Algorithm 5 gives the main steps. The output is to be a reachability matrix of size
MAX_SAMPLES ×MAX_SAMPLES. This matrix is initially null filled. As discussed
in Section IV, r-PRM starts with some given start node as the current node, say having
index i in the sample point lists, finds that node’s k nearest neighbors in the sample
space, and for each neighbor checks whether the line segment connecting the current
node to the neighbor intersects an obstacle, and if not, where the neighbor has index
j in the sample point lists, sets the contents of the i, j cell in the reachability matrix
to be the length of this line segment. The current node is then removed from the list
of potential neighbors, and the process repeats on all the neighbors. This continues
recursively until the goal node is reached.
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Algorithm 5: create_rprm_road_map_matrix

input :current_point, sample_x, sample_y
output :roadmap, E

1 current_sample_point_index← index_of_sample_point(current_point);
2 sample_x.remove(
3 sample_x[current_sample_point_index]);
4 sample_y.remove(
5 sample_y[current_sample_point_index]);
6 fskdtree← scipy.spatial.cKDTree(np.vstack(
7 (sample_x, sample_y)).T);
8 distance, index← fskdtree.query(current_point, k = nearest_neighbor_count);
9 row ← index_of_sample_point(current_point);
10 x_1← current_point[0];
11 y_1← current_point[1];
12 forall i1 in range(index.size) do
13 x_2← sample_x[index[i1]];
14 y_2← sample_y[index[i1]];
15 column← index_of_sample_point((x_2, y_2));
16 if not collision(x_1, y_1, x_2, y_2, fixed_obstacle_kdtree) then
17 rprm_road_map_matrix[row][column]← distance[i1];
18 rprm_road_map_matrix[column][row]← distance[i1];
19 create_rprm_road_map_matrix((x_2, y_2),
20 sample_x, sample_y);

6.3. Phase III: Optimal pathfinding from the roadmap inside the polygon
Once the rpm_road_map_matrix is completed, it is sent to the Dijkstra_search

procedure in line 20 of Algorithm 3 . This applies Dijkstra’s algorithm [3] to find the
shortest path from the start to the goal through the graphical network represented by
the reachability matrix. This is the global path.

7. Local path planner

This section introduces details of the various algorithms and decision methods
that will allow the USV to trigger local path planning at the most opportune time and to
route the USV behind the obstacle. Pseudocode for the simulation program is given
in Algorithms 6 through 12. Algorithm 6 initiates a run by generating appropriate
representations for the global path and the moving obstacle paths. This then invokes
Algorithm 7, which moves the USV along the global path, moves the obstacles along
their paths, and continuously checks whether the USV is in close proximity with a
moving obstacle. The test for nearby moving obstacles is in line 7 using the predefined
min_fixed_dist. Testing “true” invokes the local path planner in Algorithm 8. This
presents the decision procedure for avoiding the moving obstacle. This considers
whether the obstacle is on the left or right of the global path, whether the obstacle
is moving toward, or away from, or parallel to the global path, and, if moving toward
the global path, whether it is moving toward a point behind or in front of the USV.
Depending on the combination of these factors, the USV chooses to go either to the
left or the right of the USV, as well as whether this will be a “one-step” or a “two-step”
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movement, after which it then generates a new global path from the last step point to
the goal. Algorithm 9 shows how to move one step right. Algorithm 10 shows how to
move two steps right. Algorithm 11 shows how to move one step left. Algorithm 12
shows how to move two steps left. This stepping procedure is carried out as follows.

As shown in Figure 10, a line is constructed from the USV through the obstacle;
another line is constructed perpendicular to this line through the obstacle; and a circle
with a predetermined radius is drawn around the obstacle. Then, for example, if the
obstacle is on the left of the global path and is moving toward a point in front of the
USV, a two-step circumscription is performed by constructing a line segment from the
USV to the leftmost point where the perpendicular intersects the circle, another line
segment from that point to the farthest point where the line from the USV through the
obstacle intersects the circle, and then a new USV path is formed by joining these two
line segments together and finally adding a newly computed global path from the second
point to the goal. A one-step circumscription only uses the first of the intersection
points.

Algorithm 6: initiate_simulation
input :start, goal, min_fixed_dist, time_step
output :USV starts following rprm_mgf_path

1 Generate a rPRM-MGF path from the start node to the goal node;
2 rprm_mgf_path← representation of the rPRM-MGF path as a sequence of N steps;
3 obi_path← representation of obstacle obi path as a sequence of N steps, for each i;
4 follow_global_path_and_move_obstacles(rprm_mgf
5 _path,start, goal, min_fixed_dist, time_step);

Algorithm 7: follow_global_path_and_move_obstacles
input :rprm_mgf_path, current_location_of_USV, goal, min_fixed_dist, time_step
output :USV keeps following rprm_mgf_path; otherwise, calls USV_local_path_planner; moving obstacles

follow their paths
1 ux, uy ← current_location_of_USV;
2 while (ux, uy) != goal do
3 for each simulated moving obstacle obi do
4 {i = 1 . . . , n where n is the number of moving obstacles};
5 USV_to_ob_dist← distance(ux, uy, ox, oy);
6 {distance between USV and obi, where (ox, oy) is the current location of obi};
7 if USV_to_ob_dist <= min_fixed_dist then
8 USV_localpath_planner(rprm_mgf_path,
9 time_step , ux, uy, ox, oy, USV_to_ob_dist, i);
10 else
11 (ux, uy)← start of the next step of the rprm_mgf_path;
12 (ox, oy)← start of the next step of the obi path;

13 wait for one time_step (both USV and obstacles);
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Algorithm 8: USV_local_path_planner
input :USV _x, USV _y, USV _x_previous,

USV _y_previous, ob_x, ob_y, ob_x_previous,
ob_y_previous, USV _path

output :USV _path, tx, ty
1: obV ersusUSV ← sign((pux, puy), (ux, uy), (ox, oy));
2: obIsLeftOfUSV Path← (obV ersusUSV > 0);
3: obIsRightOfUSV Path← (obV ersusUSV < 0);
4: obIsOnUSV Path← (obV ersusUSV == 0);
5: if slopeUSV Path == slopeObPath then
6: print(“USV path and ob path are parallel”);
7: if obIsLeftOfUSV Path or obIsOnUSV Path then
8: print(“ob is left of or on USV path”);
9: print(“go right one step”);
10: USV _path, tx, ty ← go_right_one_step(USV _x, USV _y, pux, puy, ux,

uy, ox, oy, USV _path);
11: return USV _path, tx, ty;
12: end if
13: if obIsRightOfUSV Path then
14: print(“ob is right of USV path”);
15: print(“go left one step”);
16: USV _path, tx, ty = go_left_one_step(USV _x, USV _y, pux, puy, ux,

uy, ox, oy, USV _path);
17: return USV _path, tx, ty;
18: end if
19: else
20: print(“USV path and ob path not parallel”);
21: end if
22: intersectionPointV ersusLeftPerpendicular ← sign((ux, uy), (rx, ry), (ix, iy)) {intersection point (ix, iy)

of USV path and ob path. reference point (rx, ry) that is to the left of the USV path and on a line perpendicular to
the path through the point (ux, uy)};

23: intersectionPointIsBehindUSV ← (intersectionPointV ersusLeftPerpendicular > 0);
24: intersectionPointIsAheadOfUSV ← (intersectionPointV ersusLeftPerpendicular < 0);
25: intersectionPointIsAtUSV ← (intersectionPointV ersusLeftPerpendicular == 0);
26: distancePobFromUSV Path←

abs((ux− pux) ∗ (puy − poy)− (pux− pox) ∗ (uy − puy))/distanceBetweenPoints(pux, puy, ux, uy);
27: distanceObFromUSV Path←

abs((ux− pux) ∗ (puy − oy)− (pux− ox) ∗ (uy − puy))/distanceBetweenPoints(pux, puy, ux, uy);
28: obMovingTowardUSV Path← (distancePobFromUSV Path > distanceObFromUSV Path);
29: obMovingAwayFromUSV Path← (distancePobFromUSV Path < distanceObFromUSV Path);
30: distanceUSV FromObPath←

abs((ox− pox) ∗ (poy − uy)− (pox− ux) ∗ (oy − poy))/distanceBetweenPoints(pox, poy, ox, oy);
31: USVMovingTowardObPath← (distancePUSV FromObPath > distanceUSV FromObPath);
32: if intersectionPointIsBehindUSV or

intersectionPointIsAtUSV then
33: if (obIsLeftOfUSV Path or obIsOnUSV Path) and

obMovingTowardUSV Path and
USVMovingTowardObPath then

34: USV _path, tx, ty ← go_right_one_step(USV _x, USV _y, pux, puy, ux, uy,
ox, oy, USV _path)

35: return USV _path, tx, ty;
36: end if
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Algorithm 8: (Continued)
37: if (obIsRightOfUSV Path and

obMovingTowardUSV Path and
USVMovingTowardObPath then

38: USV _path, tx, ty ← go_left_one_step(USV _x, USV _y, pux, puy, ux, uy,
ox, oy, USV _path)

39: return USV _path, tx, ty;
40: end if
41: return USV _path, ux, uy;
42: end if
43: if intersectionPointIsAheadOfUSV then
44: if obIsLeftOfUSV Path or obIsOnUSV Path then
45: if obMovingTowardUSV Path then
46: USV _path, tx, ty ← go_left_two_steps(USV _x, USV _y, pux, puy, ux, uy,

ox, oy, USV _path);
47: return USV _path, tx, ty;
48: else if obMovingAwayFromUSV Path then
49: USV _path, tx, ty ← go_right_one_step(USV _x, USV _y, pux, puy, ux, uy,

ox, oy, USV _path);
50: return USV _path, tx, ty;
51: end if
52: end if
53: if obIsRightOfUSV Path then
54: if obMovingTowardUSV Path then
55: USV _path, tx, ty ← go_right_two_steps(USV _x, USV _y, pux, puy, ux, uy,

ox, oy, USV _path);
56: return USV _path, tx, ty;
57: else if obMovingAwayFromUSV Path then
58: USV _path, tx, ty ← go_left_one_step(USV _x, USV _y, pux, puy, ux, uy,

ox, oy, USV _path);
59: return USV _path, tx, ty;
60: end if
61: end if
62: end if
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Algorithm 9: go_right_one_step
input :USV _x, USV _y, pux, puy, ux, uy, ox, oy,

USV _path
output :USV _path, target_x, target_y

1 slopeOfUSV ObLink ← (oy − uy)/(ox− ux);
2 slopeOfPerpendicular ← −1/slopeOfUSV ObLink;
3 offset← offsetFactor ∗min_fixed_distance;
4 {intersection points of perpendicular with circle around ob};
5 intersection_x_1← ox+ offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
6 intersection_y_1← slopeOfPerpendicular ∗ (intersection_x_1− ox) + oy;
7 intersection_x_2← ox− offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
8 intersection_y_2← slopeOfPerpendicular ∗ (intersection_x_2− ox) + oy;
9 {choose intersection point to right of line from USV to ob};
10 if sign((ux, uy), (ox, oy), (intersection_x_1,

intersection_y_1)) < 0 then
11 target_x← intersection_x_1;
12 target_y ← intersection_y_1;
13 else
14 target_x← intersection_x_2;
15 target_y ← intersection_y_2;
16 new_target_x, new_target_y ← nearest_grid_point(target_x, target_y);
17 connecting_line_segment← get_line_segment_waypoints(ux, uy, new_target_x,

new_target_y)[: −1];
18 new_global_path← create_new_global_path((new_target_x,

new_target_y), goalNode);
19 USV _index← USV _path.index((USV _x, USV _y));
20 del USV _path[USV _index : len(USV _path)];
21 USV _path← USV _path+ connecting_line_segment+ new_global_path;
22 return USV _path, new_target_x, new_target_y;

Figure 10. Obstacle avoidance using a novel local path planner.
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Algorithm 10: go_right_two_steps
input :USV _x, USV _y, pux, puy, ux, uy, ox, oy,

USV _path
output :USV _path, target_x, target_y
1: slopeOfUSV ObLink ← (oy − uy)/(ox− ux);
2: slopeOfPerpendicular ← −1/slopeOfUSV ObLink;
3: offset← offsetFactor ∗min_fixed_distance;
4: {intersection points of perpendicular with circle around ob};
5: intersection_x_1← ox+ offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
6: intersection_y_1← slopeOfPerpendicular ∗ (intersection_x_1− ox) + oy;
7: intersection_x_2← ox− offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
8: intersection_y_2← slopeOfPerpendicular ∗ (intersection_x_2− ox) + oy;
9: {choose intersection point to right of line from USV to ob};
10: if sign((ux, uy), (ox, oy), (intersection_x_1,

intersection_y_1)) < 0 then
11: target_1_x← intersection_x_1;
12: target_1_y ← intersection_y_1;
13: else
14: target_1_x← intersection_x_2;
15: target_1_y ← intersection_y_2;
16: end if
17: line_segment_1← get_line_segment_waypoints(ux, uy, target_1_x,

target_1_y)[: −1]
18: {intersection points of USV-ob line with circle around ob};
19: intersection_x_3← ox+ offset/np.sqrt(1 + slopeOfUSV ObLink ∗ ∗2);
20: intersection_y_3← slopeOfUSV ObLink ∗ (intersection_x_3− ox) + oy;
21: intersection_x_4← ox− offset/np.sqrt(1 + slopeOfUSV ObLink ∗ ∗2);
22: intersection_y_4← slopeOfUSV ObLink ∗ (intersection_x_4− ox) + oy;
23: {choose intersection point to right of line from target_1 to ob};
24: if sign((target_1_x, target_1_y), (ox, oy),

(intersection_x_3, intersection_y_3)) < 0 then
25: target_2_x← intersection_x_3;
26: target_2_y ← intersection_y_3;
27: else
28: target_2_x← intersection_x_4;
29: target_2_y ← intersection_y_4;
30: end if
31: new_target_2_x, new_target_2_y ← nearest_grid_point(target_2_x, target_2_y);
32: line_segment_2← get_line_segment_waypoints(target_1_x, target_1_y,

new_target_2_x, new_target_2_y)[: −1]
33: new_global_path← create_new_global_path((new_target_2_x,

new_target_2_y), goalNode);
34: USV _index← USV _path.index((USV _x, USV _y));
35: del USV _path[USV _index : len(USV _path)];
36: USV _path← USV _path+ line_segment_1 + line_segment_2 + new_global_path;
37: return new_target_2_x, new_target_2_y;
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Algorithm 11: go_left_one_step
input :USV _x, USV _y, pux, puy, ux, uy, ox, oy,

USV _path
output :USV _path, target_x, target_y

1 slopeOfUSV ObLink ← (oy − uy)/(ox− ux);
2 slopeOfPerpendicular ← −1/slopeOfUSV ObLink;
3 offset← offsetFactor ∗min_fixed_distance;
4 {intersection points of perpendicular with circle around ob};
5 intersection_x_1← ox+ offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
6 intersection_y_1← slopeOfPerpendicular ∗ (intersection_x_1− ox) + oy;
7 intersection_x_2← ox− offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
8 intersection_y_2← slopeOfPerpendicular ∗ (intersection_x_2− ox) + oy;
9 {choose intersection point to left of line from USV to ob};
10 if sign((ux, uy), (ox, oy), (intersection_x_1,

intersection_y_1)) > 0 then
11 target_x← intersection_x_1;
12 target_y ← intersection_y_1;
13 else
14 target_x← intersection_x_2;
15 target_y ← intersection_y_2;
16 new_target_x, new_target_y ← nearest_grid_point(target_x, target_y);
17 connecting_line_segment← get_line_segment_waypoints(ux, uy, new_target_x,

new_target_y)[: −1];
18 new_global_path← create_new_global_path((new_target_x,

new_target_y), goalNode);
19 USV _index← USV _path.index((USV _x, USV _y));
20 del USV _path[USV _index : len(USV _path)];
21 USV _path← USV _path+ connecting_line_segment+ new_global_path;
22 return USV _path, new_target_x, new_target_y;

8. Simulation results

The simulations show that this approach can be effective. In Figures 11–15,
avoiding ob1 required two steps to the left, avoiding ob2 and ob4 required two steps
to the right, and avoiding ob3 and ob5 required one step to the left. The yellow line in
the figures represents an implementation of D* [4]. It can be seen that the local planner
effectively detects the direction of the moving obstacle and routes the USV behind it,
whereas D* does not.

Thus, these simulation experiments show that this new local path planning
algorithm is very simple and stable, and can perform in real-time. It allows the USV
to do on-board path replanning as necessary to avoid unexpected obstacles. Also, it
is well-integrated with the new global path planner. This is important for a USV
performing missions in a complex environment, where the path planner must satisfy
both the requirement of real-time on-board local path planning and at the same time
meet the demand for complete global path planning.
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Algorithm 12: go_left_two_steps
input :USV _x, USV _y, pux, puy, ux, uy, ox, oy,

USV _path
output :USV _path, target_x, target_y
1: slopeOfUSV ObLink ← (oy − uy)/(ox− ux);
2: slopeOfPerpendicular ← −1/slopeOfUSV ObLink;
3: offset← offsetFactor ∗min_fixed_distance;
4: {intersection points of perpendicular with circle around ob};
5: intersection_x_1← ox+ offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
6: intersection_y_1← slopeOfPerpendicular ∗ (intersection_x_1− ox) + oy;
7: intersection_x_2← ox− offset/np.sqrt(1 + slopeOfPerpendicular ∗ ∗2);
8: intersection_y_2← slopeOfPerpendicular ∗ (intersection_x_2− ox) + oy;
9: {choose intersection point to left of line from USV to ob};
10: if sign((ux, uy), (ox, oy), (intersection_x_1,

intersection_y_1)) > 0 then
11: target_1_x← intersection_x_1;
12: target_1_y ← intersection_y_1;
13: else
14: target_1_x← intersection_x_2;
15: target_1_y ← intersection_y_2;
16: end if
17: line_segment_1← get_line_segment_waypoints(ux, uy, target_1_x,

target_1_y)[: −1]
18: {intersection points of USV-ob line with circle around ob};
19: intersection_x_3← ox+ offset/np.sqrt(1 + slopeOfUSV ObLink ∗ ∗2);
20: intersection_y_3← slopeOfUSV ObLink ∗ (intersection_x_3− ox) + oy;
21: intersection_x_4← ox− offset/np.sqrt(1 + slopeOfUSV ObLink ∗ ∗2);
22: intersection_y_4← slopeOfUSV ObLink ∗ (intersection_x_4− ox) + oy;
23: {choose intersection point to left of line from target_1 to ob};
24: if sign((target_1_x, target_1_y), (ox, oy),

(intersection_x_3, intersection_y_3)) > 0 then
25: target_2_x← intersection_x_3;
26: target_2_y ← intersection_y_3;
27: else
28: target_2_x← intersection_x_4;
29: target_2_y ← intersection_y_4;
30: end if
31: new_target_2_x, new_target_2_y ← nearest_grid_point(target_2_x, target_2_y);
32: line_segment_2← get_line_segment_waypoints(target_1_x, target_1_y,

new_target_2_x, new_target_2_y)[: −1]
33: new_global_path← create_new_global_path((new_target_2_x,

new_target_2_y), goalNode);
34: USV _index← USV _path.index((USV _x, USV _y));
35: del USV _path[USV _index : len(USV _path)];
36: USV _path← USV _path+ line_segment_1 + line_segment_2 + new_global_path;
37: return new_target_2_x, new_target_2_y;
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Figure 11. USV going to the left behind and around moving obstacle ob1.

Figure 12. USV going to the right behind and around moving obstacle ob2.
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Figure 13. USV going to the left behind and around moving obstacle ob3.

Figure 14. USV going to the right behind and around moving obstacle ob4.
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Figure 15. USV going to the left behind and around moving obstacle ob5.

9. Prospects for future research

There are several ways in which the current work can be extended.
• Generalize to 3D. The present system works with a 2D environment, and thus

applies primarily to surface vehicles, but could also apply to underwater vehicles
(UUVs) operating at a constant depth. In order to fully accommodate UUVs,
however, the model must incorporate a depth measurement. Moreover, in doing
so, one should consider that in avoiding an obstacle, an USV can go under the
obstacle rather than around it. The decision logic should then include parameters
that determine which alternative to take.

• Expand the decision logic. In the Introduction, Section 1, there was mention
of the MOOS-IvP system and the associated algorithms presented in [7]. The
proposed expansion would include incorporating those algorithms into the local
planner. For example, the proper behavior for the USV when it is overtaking a
moving obstacle. This, in particular, requires incorporating relative speeds into
the decision process.

• Extract the decision logic component into a separate module. In the present
simulations, the decision logic is hard coded into the software. This needs to
be abstracted into a separate module with an interface that allows the human
user to specify the relevant parameters, e.g., the distance between the USV and
obstacle at which the circumnavigation process is triggered, or the relative speeds
at which the USV decides to go behind the obstacle.

• Avoid multiple moving obstacles. The current system works with one moving
obstacle at a time. This needs to be generalized to work with multiple obstacles.
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It is hereby acknowledged that this is a very complex problem and that there likely
is no optimal solution. But it is a problem that somehow needs to be addressed.

10. Conclusion

Path planning for USVs in an operational environment having fixed obstacles
typically entails computing the path off-line and loading this into the USV before
it is launched. This approach is called global planning and requires environment
information before the mission execution. This paper began with a presentation of
a new global path planning algorithm, one that is guaranteed to find a path from the
start node to the goal, as long as such a path is possible, and which produces a path
that is smooth (has no sharp turns). This uses a combination of three path planning
algorithms, including a new recursive version of the well-known Probabilistic Road
Map. It is argued that this version is conceptually simpler, easier to understand, and
usually faster. Next the paper presented a local path planner that can detect a moving
obstacle and effectively circumnavigate it so as to avoid a collision, including going
behind the obstacle whenever this is appropriate. This employs a decision logic based
on observations of the relative position and trajectories of the USV and obstacle. The
ability to route the USV behind the obstacle distinguishes this local path planner from
numerous other path planners, including the well-known D* algorithm. We believe
that the use of a higher-level decision logic to accomplish this is new, and that it can
be further extended in various ways. In addition, whereas this work has dealt only with
a two-dimensional operational environment, and thus only directly applies to surface
vehicles, that same methodology as employed here can easily be generalized to three
dimensions and thus can apply to both aerial and underwater vehicles.
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Notes
1 The original paper is somewhat poorly written, requiring some “reading between the lines” to decipher unexplained

terminology and incoherent instructions. In particular, the “if” statement on line (8) of the original pseudocode,
p. 569, has a condition that mentions the notion of a “connected component”, whereas nowhere in the paper is
it explained what this means or what role it plays in creating the road map. In our version of the algorithm, this
condition has been removed. Based on the simulation results, I believe that this has implemented the PRM method
correctly and as originally intended. It may also be noted that in choosing neighbors in N of a sample point p,
[2] selects those within a given minimum distance from p, but it is mentioned in the paper that an alternative is to
choose the k nearest neighbors of p from some k. We have taken the latter approach in order to use the KD-tree
data structure [9], which simplifies, and increases the efficiency of, the software implementation.
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